
 

 

MSc Technologies and Infrastructures for 

Broadband Applications and Services 

 

 

 

MSc Thesis Description 

Algebraic Transformations 

in Computer Graphics 
 

 

 

 

EVANTHIOS  PAPADOPOULOS  (M13) 

 

Supervisors: I. Kougias, L. Seremeti 

 

ANTIRRIO 2017 



 
2 

Contents 
 

Abstract - Περίληψη ............................................................................................. 4 

Introduction ......................................................................................................... 5 

1. The history of computer graphics ...................................................................... 6 

2. Mathematical background ............................................................................... 10 

2.1 Vectors................................................................................................................ 10 

2.1.1 Vector Notation .................................................................................................................... 10 

2.1.2 Graphical Representation of Vectors .................................................................................... 10 

2.1.3 Magnitude of a Vector .......................................................................................................... 12 

2.1.4 3D Vectors ............................................................................................................................. 12 

2.1.5 Cartesian Vectors .................................................................................................................. 14 

2.1.6 Scalar Product ....................................................................................................................... 14 

2.2 Matrices .............................................................................................................. 16 

2.2.1 The Determinant of a Matrix ................................................................................................ 19 

2.3 The Laplacian Matrix .......................................................................................... 20 

3. Transformations ............................................................................................... 21 

3.1 2D Transformations ............................................................................................ 23 

3.1.1 2D Translation ....................................................................................................................... 23 

3.1.2 2D Scaling .............................................................................................................................. 23 

3.1.3 2D Reflections ....................................................................................................................... 24 

3.1.4 2D Shearing ........................................................................................................................... 26 

3.1.5 2D Rotation ........................................................................................................................... 26 

3.1.6 2D Scaling using others transformations .............................................................................. 28 

3.1.7 2D Reflections using others transformations ....................................................................... 29 

3.2 3D Transformations ............................................................................................ 30 

3.2.1 3D Translation ....................................................................................................................... 30 

3.2.2 3D Scaling .............................................................................................................................. 30 

3.2.3 3D Rotations ......................................................................................................................... 31 

3.2.4 3D Reflections ....................................................................................................................... 36 

4. Latest Developments ........................................................................................ 37 

4.1 Entertainment and Advertising .......................................................................... 37 

4.2 Scientific Visualization ........................................................................................ 38 

4.3 Industrial Design ................................................................................................. 38 



 
3 

5. Matlab ............................................................................................................. 40 

6. Design algebraic transformations' algorithms ................................................... 41 

6.1  2-D Transformations Examples ......................................................................... 41 

6.1.1 Shear Example ...................................................................................................................... 42 

6.1.2 Scale Example ....................................................................................................................... 43 

6.1.3 Rotation Example .................................................................................................................. 45 

6.1.4 Translate Example ................................................................................................................. 46 

6.2  3-D Transformations Example ........................................................................... 48 

7. 3D ANIMATION ................................................................................................ 53 

7.1 Create a World Object ............................................................................................................. 53 

7.2 Open and View the World ....................................................................................................... 53 

7.3 Examine the Virtual World Properties ..................................................................................... 54 

7.4 Finding Nodes of the World ..................................................................................................... 54 

7.5 Accessing VRML Nodes ............................................................................................................ 55 

7.6 Viewing Fields of Nodes ........................................................................................................... 55 

7. 7 Moving the Car Node .............................................................................................................. 56 

Conclusion ........................................................................................................... 61 

References ........................................................................................................... 62 

 

 



 
4 

Abstract 
 

In this dissertation, we explore the field of computer graphics, its mathematical background, 

its origins, historical and latest developments. Finally, we present, using Matlab, several 

examples and interesting applications. 

 

 

 

 

Περίληψη 
 

Σε αυτι τθ διατριβι, εξερευνοφμε τον τομζα των γραφικών υπολογιςτών, το μακθματικό 

υπόβακρο του, τισ ρίηεσ του, τισ ιςτορικζσ και τελευταίεσ εξελίξεισ του. Τζλοσ, 

παρουςιάηουμε, χρθςιμοποιώντασ Matlab, διάφορα παραδείγματα και ενδιαφζρουςεσ 

εφαρμογζσ. 
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Introduction 
 

Computer graphics is a vast and ever expanding field of today’s applications, found on 

television, magazines and newspapers, in all sorts of medical examinations and surgical 

processes. Industries such as architecture, automotive cartoon and animation that were 

previously done by hand are now created through computers and, moreover, the rapidly 

growing industry of video games is perhaps the first one to rely mostly on 3D computer 

graphics. 

The mathematical tools, used in computer graphics programming, are mainly those of linear 

algebraic transformations, such as matrices and vectors and, most recently, Laplacian 

matrices are used to develop algorithms for computer graphics and computational 

photography. 

The main purpose of this dissertation is, firstly, to explore the fundamentals of how 

computers use linear algebraic transformations to create images, computational photos, and 

videos.  Furthermore, in depth research will be conducted on the latest developments of the 

subject and the origins of computer graphics. 

The present work is organized as follows: In the first chapter, the history and the origins of 

computer graphics is presented, the mathematical background and algebraic transformation 

are analyzed in the second and third chapters. Next, in chapter 4, the latest developments of 

the subject in entertainment and advertising, scientific visualization, and industrial design 

areas are explored and, finally, in the last the chapters, with the use of Matlab (chapter 5), 

interesting examples of algebraic transformations in computer graphics in 2D (chapter 6) 

and 3D animation (chapter 7) are given.  
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1. The history of computer graphics 

To understand the many issues in today’s modern computer graphics, you need to know 
how developed computer graphics from its beginnings to this day. 

 

1950 - Ben Laposky created the first graphic images, an Oscilloscope, generated by an 
electronic (analog) machine. The image was produced by manipulating electronic beams and 
recording them onto high-speed film. 

 

1951- The Whirlwind computer at the Massachusetts Institute of Technology was the first 
computer with a video display of real time data. 

 

 

1955 - Military applications (SAGE air-defense system used command and control CRT). 
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1962 - The first graphics station (sketchpad) consisting of a monitor, light pen and software 
for interactive operation constructed by Ivan Sutherland. 

 

" Ivan Sutherland widely regarded as the "father of computer graphics " 

 

1964 - Research team working on the algorithms in computer graphics employed at the 
University of Utah (including Ivan Sutherland, James Blinn, Edwin Catmull). 

1965 - The first commercial graphics station: IBM 2250 Display Unit and the IBM PC 1130. 

 

"The first widely available interactive computer graphics terminal" 

1969 - Beginning of a group SIGGRAPH (Special Interest Group on Graphics) in the 
organization of ACM (Association for Computing Machinery) gathering of IT professionals. 

1974 - Creation of graphics laboratory at the New York Institute of Technology. 

1980 - Turner Whitted published article about creating realistic images, beginning of method 
of ray tracing. 

1982 - TRON, the first film that uses computer graphics. The first completely computer-
generated scene in the movie Star Trek II: The Wrath of Khan. 

1983 - Development of fractal techniques and their use in computer graphics. Fractals are 
used for example in the movie Star Trek II: The Wrath of Khan. 

1984 - Work of C. Goral, K. Torrance, D. Greenberg and B. Battaile and proposing a new 
approach for visualization – the method of radiosity. 
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1988 – The first film sequence with morphing in Willow. 

1989 - The first character created using 3D graphics in the studio Industrial Light & Magic 
(ILM). 

1993 - Dinosaurs in Jurassic Park – the first complete and detailed living organisms 
generated digital technology. 

1995 - Toy Story implemented complete using computer graphics, the first photo-realistic 
hair and fur computer generated. 

 

1999  -  The first character of the complete human anatomy in a computer-generated studio 
ILM. 

2001 - Photon mapping as the development of ray tracing method. 

2006  -  Google acquires Sketchup (3D modeling software) . 

2009 - Film Avatar – 3D cinema revolution. 

 

2009 - Decision to create specialty Modern Computer Graphics for Applied Computer 
Science at the University of Science and Technology in Cracow. 
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Summing up, the beginnings of computer graphics were related to the military industry, due 
to the very high cost of their equipment. The development of new graphic techniques and 
their applications forced the film industry to require, apart from other uses, those of realistic 
special effects. Currently, computer graphics is also used in many areas of the human life 
such as photography, industry, sciences, architecture, navigation, cartography, medical 
diagnostics, special effects in movies, computer games, education, digital art, computational 
biology and physics, web design, virtual reality etc. [1]  
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2. Mathematical background  
 

The mathematical tools, used in computer graphics programming, are mainly those of linear 

algebraic transformations, such as vectors and matrices and, most recently, Laplacian 

matrices are used to develop algorithms for computer graphics and computational 

photography. [2] 

 

2.1 Vectors 
In computer graphics we employ 2D and 3D vectors. In this chapter we first consider vector 
notation in a 2D context and then extrapolate the ideas into 3D. 
 

2.1.1 Vector Notation 
A scalar such as x is just a name for a single numeric quantity. However, because a vector 
contains two or more numbers, it' s symbolic name is printed using a bold font to distinguish 
it from a scalar variable.  When a scalar variable is assigned a value we employ the standard 
algebraic notation 
                                                               x=3 
 
However, when a vector is assigned its numeric values, the following notation 
is used: 

                                                                    n=  

 
which is called a column vector. The numbers 3 and 4 are called the components of n, and 
their position within the brackets is significant. A row vector transposes the components 
horizontally, n = [3 4]T where the superscript T reminds us of the transposition. 
 

 

2.1.2 Graphical Representation of Vectors 
Because vectors have to encode direction as well as magnitude, an arrow could be used to 
indicate direction and a number to specify magnitude. Such a scheme is often used in 
weather maps. Although this is a useful graphical interpretation for such data, it is not 
practical for algebraic manipulation. Cartesian coordinates provide an excellent mechanism 
for visualizing vectors and allowing them to be incorporated within the classical framework 
of mathematics. Figure 2.1 shows a vector represented by a short line segment. 
The length of the line represents the vector’s magnitude, and the orientation defines its 
direction. But as you can see from the figure, the line does not have a direction. Even if we 
attach an arrowhead to the line, which is standard practice for annotating vectors in books 
and scientific papers, the arrowhead has no mathematical reality. 
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Figure 2.1. A vector represented by a short line segment. However, although the vector 
has magnitude, it does not have direction. 

 

 

Figure 2.2. Two vectors r and s have the same magnitude and opposite directions. 

The line’s direction can be determined by first identifying the vector’s tail and then 
measuring its components along the x- and y-axes. For example, in Figure 3.2 the vector r 
has its tail defined by (x1, y1) = (1, 2) and its head by (x2, y2) = (2, 3). Vector s, on the other 
hand, has its tail defined by (x3, y3) = (2, 2) and its head by (x4, y4) = (1, 1). The x- and                          
y-components for r are computed as follows: 
 

xr = (x2 − x1)          yr = (y2 − y1) 
xr = 2− 1 = 1          yr = 3− 2 = 1 

 
whereas the components for s are computed as follows: 

         xs = (x4 − x3)          ys = (y4 − y3) 
          xs = 1−2 = −1         ys = 1−2 = −1 

xs = −1                   ys = −1 
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It is the negative values of xs and ys that encode the vector’s direction. In general, given that 
the coordinates of a vector’s head and tail are (xh, yh) and (xt, yt) respectively, its components 
Δx and Δy are given by 

Δx = (xh − xt) Δy = (yh − yt)  
 
One can readily see from this notation that a vector does not have a unique position in 
space. It does not matter where we place a vector: so long as we preserve its length and 
orientation, its components will not alter. 
 

2.1.3 Magnitude of a Vector 
The magnitude of a vector r is expressed by ║r║ and is computed by applying the theorem 
of Pythagoras to its components: 

  

║r║=  

 
To illustrate these ideas, consider a vector defined by (xh, yh) = (3, 4) and (xt, yt) = (1, 1).                      
The x- and y-components are 2 and 3 respectively. Therefore its magnitude is equal to 
 

 = 3.606 

 
Figure 2.3 shows various vectors, and their properties are listed in Table 1. 
 

 

Figure 2.3. Eight vectors, whose coordinates are shown in Table 1 

 

2.1.4 3D Vectors 

The above vector examples are in 2D, but it is extremely simple to extend this notation to 
embrace an extra dimension. Figure 2.4 shows a 3D vector r with its head, tail, components 
and magnitude annotated. The components and magnitude are given by 

 

Δx = (xh − xt) 
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Table 1. Values associated with the vectors shown in Figure 3.3 
 
 

 

Figure 2.4. The 3D vector has components Δx, Δy, Δz, which are the differences between 
the head and tail coordinates. 

 

 
 

Δy  = (yh − yt)  
Δz  = (zh − zt)  

║r║ =   
 
 
As 3D vectors play a very important part in computer animation. 
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2.1.5 Cartesian Vectors 
Now we can combine the scalar multiplication of vectors, vector addition and unit vectors to 
permit the algebraic manipulation of vectors. To begin with, we will define three Cartesian 
unit vectors i, j, k that are aligned with the x -, y- and z -axes respectively: 
 

 

Therefore any vector aligned with the x-, y- or z -axes can be defined by a scalar multiple of 
the unit vectors i, j and k respectively. For example, a vector 10 units long aligned with the x 
-axis is simply 10i, and a vector 20 units long aligned with the z -axis is 20k.                                               
By employing the rules of vector addition and subtraction, we can compose a vector r by 
adding three Cartesian vectors as follows: 

r = ai + bj + ck 
This is equivalent to writing r as 

 
which means that the magnitude of r is readily computed as 

 
Any pair of Cartesian vectors such as r and s can be combined as follows: 

r = ai + bj + ck 
s = di + ej + fk 

r ± s = (a ± d)i + (b ± e)j + (c ± f)k 
 
For example, given r = 2i + 3j + 4k     and    s = 5i + 6j + 7k 
then                                              r + s = 7i + 9j + 11k 
and 
 

 
 

2.1.6 Scalar Product 
We could multiply two vectors r and s by using the product of their magnitudes: 

||r|| · ||s|| 
Although this is a valid operation, it does not get us anywhere because it ignores the 
orientation of the vectors, which is one of their important features. The concept, however, is 
readily developed into a useful operation by including the angle between the vectors. Figure 
2.5 shows two vectors r and s that have been drawn, for convenience, such that their tails 
touch. Taking s as the reference vector, which is an arbitrary choice, we compute the 
projection of r on s, which takes into account their relative orientation. The length of r on s is 
||r|| cos(β). We can now multiply the magnitude of s by the projected length of r :    
 

||s||·||r|| cos(β) 
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This scalar product is written 

s · r = ||s|| · ||r|| cos(β)  
 
The dot symbol ‘·’ is used to represent scalar multiplication, to distinguish it from the vector 
product, which employs an ‘x’ symbol. 
Because of this symbol, the scalar product is often referred to as the dot product. 
So far we have only defined what we mean by the dot product. We now need to find out 
how to compute it. Fortunately, everything is in place to perform this task. To begin with, we 
define two Cartesian vectors r and s, and proceed to multiply them together using the dot 
product definition: 

r = ai + bj + ck  
s = di + ej + fk  

therefore 

r · s = (ai + bj + ck) · (di + ej + fk)  
         = ai · (di + ej + fk) + bj·(di + ej + fk) + ck·(di + ej + fk) 
 

 
Figure 2.5. The projection of r on s creates the basis for the scaler product 

 

r · s = ad(i · i) + ae(i · j) + af(i · k) + 

          bd(j · i) + be(j · j) + bf(j · k) + 

       cd(k · i) + ce(k · j) + cf(k · k) 
 

Before we proceed any further, we can see that we have created various dot product terms 
such as (i · i), (j · j), (k · k), etc. These terms can be divided into two groups: those that 
involve the same unit vector, and those that reference different unit vectors. 
Using the definition of the dot product, terms such as (i · i), (j · j) and (k · k) = 1, because the 
angle between i and i, j and j, or k and k is 0◦; and cos(0◦) = 1. But because the other vector 
combinations are separated by 90◦, and cos(90◦) = 0, all remaining terms collapse to zero. 
Bearing in mind that the magnitude of a unit vector is 1, we can write 

 
||s|| · ||r|| cos(β) = ad + be + cf 

 
 
This result confirms that the dot product is indeed a scalar quantity. 
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2.2 Matrices 
Matrix notation was investigated by the British mathematician Arthur Cayley around 1858. 
Caley formalized matrix algebra, along with the American mathematicians Benjamin and 
Charles Pierce. Also, by the start of the 19th century Carl Gauss (1777–1855) had proved 
that transformations were not commutative, i.e. T1 × T2 ≠T2 × T1, and Caley’s matrix 
notation would clarify such observations. For example, consider the transformation T1: 

 
 

and another transformation T2 that transforms T1: 
 

 
 
If we substitute the full definition of T1 we get 
 

 
 
which simplifies to 
 

 
 
Caley proposed separating the constants from the variables, as follows: 
 

 
 
where the square matrix of constants in the middle determines the transformation. 
 
The algebraic form is recreated by taking the top variable x', introducing the = sign, and 
multiplying the top row of constants [a b] individually by the last column vector containing x 
and y. We then examine the second variable y', introduce the = sign, and multiply the 
bottom row of constants [c d] individually by the last column vector containing x and y, to 
create 
 

 
 
 
 
Using Caley’s notation, the product T2 × T1 is 
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But the notation also intimated that 
 

 
 

and when we multiply the two inner matrices together they must produce 
 

 
 
or in matrix form 
 

 
 
otherwise the two systems of notation will be inconsistent. This implies that 
 

 
 
which demonstrates how matrices must be multiplied. 
 
Here are the rules for matrix multiplication: 
 

 
1 The top left-hand corner element Aa+Bc is the product of the top row of 
the first matrix by the left column of the second matrix. 
 

 
2 The top right-hand element Ab + Bd is the product of the top row of the first matrix by the 
right column of the second matrix. 
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3 The bottom left-hand element Ca + Dc is the product of the bottom row of the first matrix 
by the left column of the second matrix. 
 

 
4 The bottom right-hand element Cb+Dd is the product of the bottom row of the first matrix 
by the right column of the second matrix. 
 
It is now a trivial exercise to confirm Gauss’s observation that T1 × T2 ≠ T2 × T1, because if 
we reverse the transforms T2 × T1 to T1 × T2 we get 
 

 
which shows conclusively that the product of two transforms is not commutative. 
 
One immediate problem with this notation is that there is no apparent mechanism to add or 
subtract a constant such as c or f : 
 

 
 
Mathematicians resolved this in the 19th century, by the use of homogeneous coordinates.  
 
Basically, homogeneous coordinates define a point in a plane using three coordinates instead 
of two. The reason why this coordinate system is called ‘homogeneous’ is because it is 
possible to transform functions such as f (x, y ) into the form f (x /t, y /t ) without disturbing 
the degree of the curve. To the non-mathematician this may not seem anything to get 
excited about, but in the field of projective geometry it is a very powerful concept. 
 
For our purposes, we can imagine that a collection of homogeneous points of the form        
(x, y, t ) exist on an xy -plane where t is the z -coordinate, as illustrated in Figure 2.6.                 
The figure shows a triangle on the t = 1 plane, and a similar triangle, much larger, on a more 
distant plane. Thus instead of working in two dimensions, we can work on an arbitrary          
xy -plane in three dimensions. The t - or z -coordinate of the plane is immaterial because the 
x - and y -coordinates are eventually scaled by t. However, to keep things simple it seems a 
good idea to choose t = 1. This means that the point (x, y) has homogeneous coordinates     
(x, y, 1), making scaling unnecessary.                                                                                                      
If we substitute 3D homogeneous coordinates for traditional 2D Cartesian coordinates, we 
must attach a 1 to every (x, y) pair. When a point (x, y, 1) is transformed, it will emerge as     
(x, y, 1), and we discard the 1. This may seem a futile exercise, but it resolves the problem of 
creating a translation transformation. 
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Consider the following transformation on the homogeneous point (x, y, 1):    
 

         

This expands to 

 

 

Figure 2.6. 2D homogeneous coordinates can be visualized as a plane in 3D space, generally where                   
t = 1, for convenience. 

 

 

 

2.2.1 The Determinant of a Matrix 
The determinant of a 2 × 2 matrix is a scalar quantity computed. Given a matrix  
 

                                                               
 
its determinant is ad – cb and is represented by 
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For example, the determinant of 
 

 
 

Later, we will discover that the determinant of a 2 × 2 matrix determines the change in area 
that occurs when a polygon is transformed by the matrix. 
For example, if the determinant is 1, there is no change in area, but if the determinant is 2, 
the polygon’s area is doubled.  
                                                                                                                                                       

 

2.3 The Laplacian Matrix 

The Laplacian matrix, sometimes also called the admittance matrix or Kirchhoff matrix, of a 
graph G, where G=(V, E) is an undirected, unweighted graph without graph loops (i, i) or 
multiple edges from one node to another, V is the vertex set, n=|V| , and E is the edge set, is 
an nxn symmetric matrix with one row and column for each node defined by L= D - A 

where D=diag(d1, ... ,dn) is the degree matrix, which is the diagonal matrix formed from the 
vertex degrees and A is the adjacency matrix. The diagonal elements li j of L are therefore 
equal the degree of vertex vi and off-diagonal elements li j  are -1 if vertex vi  is adjacent to vj 
and 0 otherwise.  

A normalized version of the Laplacian matrix, denoted   , is similarly defined by  

 

The Laplacian matrix is a discrete analog of the Laplacian operator in multivariable calculus 
and serves a similar purpose by measuring to what extent a graph differs at one vertex from 
its values at nearby vertices. The Laplacian matrix arises in the analysis of random walks and 
electrical networks on graphs, and in particular in the computation of resistance distances.   

[3]  

                                                                                                                                                        

http://mathworld.wolfram.com/Graph.html
http://mathworld.wolfram.com/UndirectedGraph.html
http://mathworld.wolfram.com/GraphLoop.html
http://mathworld.wolfram.com/MultipleEdge.html
http://mathworld.wolfram.com/VertexSet.html
http://mathworld.wolfram.com/EdgeSet.html
http://mathworld.wolfram.com/SymmetricMatrix.html
http://mathworld.wolfram.com/DegreeMatrix.html
http://mathworld.wolfram.com/DiagonalMatrix.html
http://mathworld.wolfram.com/VertexDegree.html
http://mathworld.wolfram.com/AdjacencyMatrix.html
http://mathworld.wolfram.com/Laplacian.html
http://mathworld.wolfram.com/ResistanceDistance.html
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3. Transformations 
 

Transformations are used to scale, translate, rotate, reflect and shear shapes and objects. 

And, as we shall discover shortly, it is possible to affect this by changing their coordinate 

values. Although algebra is the basic notation for transformations, it is also possible to 

express them as matrices, which provide certain advantages for viewing the transformation 

and for interfacing to various types of computer graphics hardware. [2] 

 

Translation 

Cartesian coordinates provide a one-to-one relationship between number and shape, such 

that when we change a shape’s coordinates, we change its geometry. For example, if P (x, y) 

is a vertex on a shape, when we apply the operation x = x + 3 we create a new point P (x , y) 

three units to the right. Similarly, the operation y = y + 1 creates a new point P (x, y ) 

displaced one unit vertically. By applying both of these transforms to every vertex to the 

original shape, the shape is displaced as shown in Figure 3.1. 

 

 

Figure 3.1. The translated shape results by adding 3 to every x-coordinate, and 1 to every y-

coordinate of the original shape. 

 

 

Scaling 

Shape scaling is achieved by multiplying coordinates as follows: 
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Figure 3.2 The scaled shape results by multiplying every x-coordinate by 2 and every y-coordinate              

by 1.5. 

This transform results in a horizontal scaling of 2 and a vertical scaling of 1.5, as 

illustrated in Figure 3.2. Note that a point located at the origin does not change its place, so 

scaling is relative to the origin. 

 

 Reflection 

To make a reflection of a shape relative to the y -axis, we simply reverse the sign of the                     

x -coordinate, leaving the y -coordinate unchanged 

 

 

Figure 3.3. The top right-hand shape can give rise to the three reflections simply by reversing the 

signs of coordinates. 

and to reflect a shape relative to the x -axis we reverse the y -coordinates: 
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3.1 2D Transformations 

3.1.1 2D Translation 
The algebraic and matrix notation for 2D translation is 

 

or, using matrices, 

 

3.1.2 2D Scaling 
The algebraic and matrix notation for 2D scaling is 

 

 

or, using matrices, 

 

 

The scaling action is relative to the origin, i.e. the point (0,0) remains (0,0)                                                
All other points move away from the origin. To scale relative to another point (px, py ) we 
first subtract (px, py ) from (x, y) respectively. This effectively translates the reference point 
(px, py ) back to the origin. Second, we perform the scaling operation, and third, add (px, py ) 
back to (x, y) respectively, to compensate for the original subtraction. Algebraically this is 

 

which simplifies to 
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or in a homogeneous matrix form 

  

 
      
         (1) 

For example, to scale a shape by 2 relative to the point (1, 1) the matrix is 

 

 

 

3.1.3 2D Reflections 
The matrix notation for reflecting about the y -axis is: 

 

or about the x -axis 

 

 

However, to make a reflection about an arbitrary vertical or horizontal axis we need to 

introduce some more algebraic deception. For example, to make a reflection about the 

vertical axis x = 1, we first subtract 1 from the x-coordinate. This effectively makes the x = 1 

axis coincident with the major y -axis. Next we perform the reflection by reversing the sign 

of the modified x-coordinate. And finally, we add 1 to the reflected coordinate to 

compensate for the original subtraction. Algebraically, the three steps are 

 

which simplifies to 
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or in matrix form, 

 

Figure 3.4 illustrates this process. 

In general, to reflect a shape about an arbitrary y-axis, y=ax , the following transform is 
required: 

 

or, in matrix form, 

                                     

 
 
         (2) 

 

Figure 3.4. The shape on the right is reflected about the x = 1 axis. 

 

Similarly, this transform is used for reflections about an arbitrary x -axis, y = ay: 

 

or, in matrix form, 
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3.1.4 2D Shearing 
A shape is sheared by leaning it over at an angle β. Figure 3.5 illustrates the geometry, and 
we see that the y -coordinate remains unchanged but the x -coordinate is a function of y and 
tan(β). 

 

or, in matrix form,  

 

 

 

Figure 3.5. The original square shape is sheared to the right by an angle β,                                                                                   

and the horizontal shift is proportional to ytan(β). 

 

 

3.1.5 2D Rotation 
Figure 3.6 shows a point P (x, y) which is to be rotated by an angle β about the origin to    P' 

(x' , y' ). It can be seen that 
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therefore, 

 

or, in matrix form, 

 

For example, to rotate a point by 90◦ the matrix becomes 

 

Figure 3.6. The point P (x, y) is rotated through an angle β to P (x , y ). 
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Thus the point (1, 0) becomes (0, 1). If we rotate by 360◦ the matrix becomes 

 

Such a matrix has a null effect and is called an identity matrix. 

 

3.1.6 2D Scaling using others transformations 
The strategy we used to scale a point (x, y) relative to some arbitrary point (px, py) was to 
first, translate (−px, −py); second, perform the scaling; and third, translate (px, py). These 
three transforms can be represented in matrix form as follows: 

 

which expands to 

 

 

Note the sequence of the transforms, as this often causes confusion. The first transform 
acting on the point (x, y, 1) is translate (−px, −py), followed by scale (sx, sy), followed by 
translate (px, py). If they are placed in any other sequence, you will discover, like Gauss, that 
transforms are not commutative! 

We can now concatenate these matrices into a single matrix by multiplying them together. 
This can be done in any sequence, so long as we preserve the original order. Let’s start with 
scale (sx, sy) and translate (−px, −py). This produces 

 

and finally 

 

 

which is the same as the previous transform (1). 
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3.1.7 2D Reflections using others transformations 
A reflection about the y -axis is given by 

 

Therefore, using matrices, we can reason that a reflection transform about an arbitrary axis      
x = ax, parallel with the y -axis, is given by 

 

which expands to 

 

 

We can now concatenate these matrices into a single matrix by multiplying them together. 

Let’s begin by multiplying the reflection and the translate (−ax, 0) matrices together.           

This produces 

 

and finally 

 
 

which is the same as the previous transform (2). 

 

 

 

 

 

 



 
30 

3.2 3D Transformations 
Now we come to transformations in three dimensions, where we apply the same reasoning 

as in two dimensions. Scaling and translation are basically the same, but where in 2D we 

rotated a shape about a point, in 3D we rotate an object about an axis. 

 

3.2.1 3D Translation 
The algebra is so simple for 3D translation that we can write the homogeneous matrix 
directly: 

 

 

3.2.2 3D Scaling 
The algebra for 3D scaling is 

 

which in matrix form is 

 

The scaling is relative to the origin, but we can arrange for it to be relative to an arbitrary 
point (px, py , pz) with the following algebra: 

 

which in matrix form is 
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3.2.3 3D Rotations 
In two dimensions a shape is rotated about a point, whether it is the origin or some arbitrary 

position. In three dimensions an object is rotated about an axis, whether it is the x -, y - or z -

axis, or some arbitrary axis. To begin with, let’s look at rotating a vertex about one of the 

three orthogonal axes; such rotations are called Euler rotations after the Swiss 

mathematician Leonhard Euler (1707–1783). 

Recall that a general 2D-rotation transform is given by 

 

which in 3D can be visualized as rotating a point P (x, y, z) on a plane parallel with the xy -
plane as shown in Figure 3.7. In algebraic terms this can be written as 

 

Therefore, the 3D transform can be written as 

 

which basically rotates a point about the z -axis. 

 

 

                         Figure 3.7. Rotating P about the z-axis. 
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When rotating about the x -axis, the x -coordinate remains constant while the y - and           

z -coordinates are changed. Algebraically, this is 

 

or, in matrix form   

 

 

When rotating about the y -axis, the y -coordinate remains constant while the x - and              
z -coordinates are changed. Algebraically, this is 

 

or, in matrix form 

 

 

Note that the matrix terms do not appear to share the symmetry seen in the previous two 
matrices. Nothing has really gone wrong, it is just the way the axes are paired together to 
rotate the coordinates. 

 

The above rotations are also known as yaw, pitch and roll. Great care should be taken with 
these terms when referring to other books and technical papers. Sometimes a left-handed 
system of axes is used rather than a right-handed set, and the vertical axis may be the y -axis 
or the z -axis. 

Consequently, the matrices representing the rotations can vary greatly. In this text all 
Cartesian coordinate systems are right-handed, and the vertical axis is always the y -axis. 
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The roll, pitch and yaw angles can be defined as follows: 

• roll is the angle of rotation about the z -axis  

• pitch is the angle of rotation about the x -axis  

• yaw is the angle of rotation about the y -axis 
 

Figure 3.8 illustrates these rotations and the sign convention. The homogeneous matrices 
representing these rotations are as follows: 

•  rotate roll about the z -axis: 

 

•  rotate pitch about the x -axis: 

 

•  rotate yaw about the y -axis: 

 

 

 

Figure 3.8. The convention for roll, pitch and yaw angles. 
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A common sequence for applying these rotations is roll, pitch, yaw, as seen in the 

following transform: 

 

and if a translation is involved, 

 

When these rotation transforms are applied, the vertex is first rotated about the z -axis 
(roll), followed by a rotation about the x -axis (pitch), followed by a rotation about the y -axis 
(yaw). Euler rotations are relative to the fixed frame of reference. This is not always easy to 
visualize, as one’s attention is normally with the rotating frame of reference.  

Let’s consider a simple example where an axial system is subjected to a pitch rotation 
followed by a yaw rotation relative to fixed frame of reference. We begin with two frames of 
reference XYZ and X' Y' Z' mutually aligned. Figure 3.9 shows the orientation of X' Y' Z' after 
it is subjected to a pitch of 90◦ about the x -axis. Figure 3.10 shows the final orientation after 
X' Y' Z' is subjected to a yaw of 90◦ about the y -axis. 

 

Fig. 3.9. The X' Y' Z'  axial system after a pitch of 90
◦
.              Fig.3.10. The X' Y' Z'  axial system after a yaw of 90

◦
. 

 

Rotating about an Axis 

The above rotations were relative to the x -, y - and z -axes. Now let’s consider rotations 

about an axis parallel to one of these axes. To begin with, we will rotate about an axis 

parallel with the z -axis, as shown in Figure 3.11.  

The scenario is very reminiscent of the 2D case for rotating a point about an arbitrary point, 

and the general transform is given by 
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and the matrix is 

 

 

I hope you can see the similarity between rotating in 3D and 2D: the x - and y -coordinates 

are updated while the z -coordinate is held constant. 

 

Figure 3.11.  Rotating a point about an axis parallel with the z-axis 

 

We can now state the other two matrices for rotating about an axis parallel with the x -axis 

and parallel with the y -axis: 

•  rotating about an axis parallel with the x -axis: 

 

•  rotating about an axis parallel with the y -axis: 
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3.2.4 3D Reflections 
Reflections in 3D occur with respect to a plane, rather than an axis. The matrix giving the 

reflection relative to the yz -plane is 

 

 

and the reflection relative to a plane parallel to, and ax units from, the yz- plane is 
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4. Latest Developments  
 

Computer graphics, a subfield of computer science, is concerned with digitally synthesizing 
and manipulating visual content. Although the term often refers to three-dimensional (3D) 
computer graphics, it also encompasses two-dimensional (2D) graphics and image 
processing. Graphics is often differentiated from the field of visualization, although the two 
have many similarities. Entertainment (in the form of animated movies and video games) is 
perhaps the most well-known application of computer graphics. 

Today, computer graphics can be seen in almost every illustration made. Computer graphics 
are often used by photographers to improve photos. It also has many other applications, 
ranging from the motion picture industry to architectural rendering. As a tool, computer 
graphics, which were once very expensive and complicated, can now be used by anyone in 
the form of freeware. In the future, computer graphics could possibly replace traditional 
drawing or painting for illustrations. Already, it is being used as a form of enhancement for 
different illustrations. 

The use of and relevance of computer graphics has blossomed in many areas in the past 20 
years, ranging from the studio arts to new mathematical disciplines such as computational 
geometry. The areas, in which graphics have arguably had the most impact,—and certainly 
the most visibility—can loosely be categorized as entertainment and advertising, scientific 
visualization, and industrial design [4].   

 

4.1 Entertainment and Advertising 
No doubt the most stylish deployment of computer graphics today is in Hollywood and on 

Madison Avenue. Special effects, photographic manipulations, computer animation, and 

other digital trickery routinely spice up (often otherwise dull) movies and ad spots. Students 

are aware that many of these effects—based as they are on generating shapes and 

transforming shapes over time—are inherently geometric in nature. From the perspective of 

classroom geometry, these graphics applications can be great motivators.  

 

Figure 4.1 3D animation movie (2017) 

http://www.newworldencyclopedia.org/entry/Computer_science
http://www.newworldencyclopedia.org/entry/Motion_picture
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4.2 Scientific Visualization 
Though slightly less glamorous than Hollywood, scientific visualization forms a second 

important focus of computational modeling and graphics efforts. Here, computer-generated 

illustrations and simulations are used to depict the structure of objects that cannot 

otherwise be inspected because they are too small (e.g., chemical compounds and crystal 

structures), too large (global weather patterns), too remote (topography of distant planets), 

too abstract (such as multi-dimensional mathematical manifolds), or too dangerous (such as 

atmospheric conditions in the eye of a hurricane and in deep ocean trenches). In fact, most 

computer graphics technologies are originally developed to provide some new tools to the 

scientific visualization community, and then later reappear in less expensive applications 

within other domains.  

 

 

Figure 4.2 Global wind map 

 

4.3 Industrial Design 
Computer-aided design (CAD; and computer-aided manufacture, CAM) form computer 

graphics' third major bailiwick. Designers today routinely employ computerized 

visualizations and structural models to test industrial artifacts (mass-produced consumer 

goods, airplanes, vehicles, buildings, bridges, etc.) for safety, cost, utility, and efficiency 

before manufacturing a first physical prototype.  

Geometry often plays a novel role in resolving a central tension faced by industrial 
designers. On the one hand, it's essential to have a precise mathematical model and 
symbolic representation of a new design, so that it can be exhaustively analyzed for the 
previously mentioned viability factors (safety, efficiency, and so forth). But on the other,         
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if one is designing a new automobile, one can't test-drive an equation from the blackboard! 
Geometry mediates between these conflicting desires—for a precise symbolic 
representation of the engineered object, and for a fluid, artistic visualization of it—by 
defining the intersection of analytic and aesthetic characteristics of shape. 

 

 

Figure 4.3 Industrial design of a bridge 
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5. Matlab 

Millions of engineers and scientists worldwide use MATLAB® to analyze and design the 
systems and products transforming our world. MATLAB is in automobile active safety 
systems, interplanetary spacecraft, health monitoring devices, smart power grids, and LTE 
cellular networks. It is used for machine learning, signal processing, image processing, 
computer vision, communications, computational finance, control design, robotics, and 
much more.  

The MATLAB platform is optimized for solving engineering and scientific problems. The 
matrix-based MATLAB language is the world’s most natural way to express computational 
mathematics. Built-in graphics make it easy to visualize and gain insights from data. A vast 
library of prebuilt toolboxes lets you get started right away with algorithms essential to your 
domain. The desktop environment invites experimentation, exploration, and discovery. 
These MATLAB tools and capabilities are all rigorously tested and designed to work together. 

MATLAB helps you take your ideas beyond the desktop. You can run your analyses on larger 
data sets and scale up to clusters and clouds. MATLAB code can be integrated with other 
languages, enabling you to deploy algorithms and applications within web, enterprise, and 
production systems. [5] 

 
 
 

 
 

Figure. 5.1. Matlab workspace 
 

 
In the following examples, we will use MATLAB to design our algebraic transformations and 
3D animations. 
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6. Design algebraic transformations' algorithms 
 

Linear algebra provides many tools that are of interest for computer programmers especially 
for those who deal with the computer graphics. Once the graphical object is created one has 
to transform it to another object. Certain plane and/or space transformations are linear. 
Therefore they can be realized as the matrix-vector multiplication. [6]  
 
 

6.1  2-D Transformations Examples 
In the following table, there are 2-D transformations which we will use in our examples. 

 

                                                                                                                                                                    
[8] 
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6.1.1 Shear Example 
 

 Read image into workspace and display it. 

>> I = imread('cameraman.tif'); 

imshow(I) 

 

Figure 6.2 Original image 

 

 Create a 2-D geometric transformation object. 

>> tform = affine2d([1 0 0; .5 1 0; 0 0 1]) 

tform =  

 

  affine2d with properties: 

    T: [3x3 double] 

    Dimensionality: 2 

 

 Apply the transformation to the image. 

>> J = imwarp(I,tform); 

figure 

imshow(J) 
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Figure 6.3 Sheared image 

                                                                                                                                                             [7] 

 

6.1.2 Scale Example 
 Read image into workspace and display it. 

>> I = imread('cameraman.tif'); 

imshow(I) 

 

Figure 6.4 Original image 
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 Create a 2-D geometric transformation object. 

 
>> tform = affine2d([3 0 0; 0 2 0; 0 0 1]) 

 

 

tform =  

 

  affine2d with properties: 

 

    T: [3x3 double] 

    Dimensionality: 2 

 

 Apply the transformation to the image. 
>> J = imwarp(I,tform); 

figure 

imshow(J) 

 

 

Figure 6.5 Scaled image 

[8] [9] 
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6.1.3 Rotation Example 
A computer code, provided below, deals with the plane rotations in the counterclockwise 
direction. Function rot2d takes a planar object represented by two vectors x and y and 
returns its image. The angle of rotation is supplied in the degree measure. [6] 
 
function [xt, yt] = rot2d(t, x, y) 

% Rotation of a two-dimensional object that is represented by two 

% vectors x and y. The angle of rotation t is in the degree measure. 

% Transformed vectors x and y are saved in xt and yt, respectively. 

t1 = t*pi/180; 

r = [cos(t1) -sin(t1);sin(t1) cos(t1)]; 

x = [x x(1)]; 

y = [y y(1)]; 

hold on 

grid on 

axis equal 

fill(x, y,'b') 

z = r*[x;y]; 

xt = z(1,:); 

yt = z(2,:); 

fill(xt, yt,'r'); 

title(sprintf('Plane rotation through the angle of %3.2f degrees',t)) 

hold off 

 

Vectors x and y 
 
x = [1 2 3 2]; y = [3 1 2 4]; 

 

are the vertices of the parallelogram. We will test function rot2d on these vectors using as 
the angle of rotation t = 75. 
[xt, yt] = rot2d(75, x, y) 
 

xt = 

-2.6390 -0.4483 -1.1554 -3.3461 -2.6390 

yt = 

1.7424 2.1907 3.4154 2.9671 1.7424 

 

 

Figure 6.6 The right object is the original parallelogram while the left one is its image. 
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6.1.4 Translate Example 
 

 Read image into the workspace 

    I = imread('pout.tif'); 

       figure 

       imshow(I); 

       title('Original Image'); 

       set(gca,'Visible','on'); 
 

 

 

Figure 6.7 Original Image 

 

 Translate the image 

J = imtranslate(I,[25.3, -10.1],'FillValues',255); 

 

 
 

 

 Display the translated image 

        figure 

        imshow(J); 

        title('Translated Image'); 

        set(gca,'Visible','on'); 
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Figure 6.8 Translated Image 
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6.2  3-D Transformations Example 
This example shows how to do rotations and scale in 3D using matrices [11]. 

 Define the parametric surface x(u,v), y(u,v), z(u,v) as follows. 

syms u v 

x = cos(u)*sin(v); 

y = sin(u)*sin(v); 

z = cos(v)*sin(v); 
 

 

 

 Plot the surface using fsurf. 

 

      fsurf(x,y,z) 

      axis equal 

 
 

 

 
Figure 6.9. Surface 

 

 

 Create 3-by-3 matrices Rx, Ry, and Rz representing plane rotations by an angle t 

about the x-, y-, and z-axis, respectively. 

 

       syms t 

 

       Rx = [1 0 0; 0 cos(t) -sin(t); 0 sin(t) cos(t)] 
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       Ry = [cos(t) 0 sin(t); 0 1 0; -sin(t) 0 cos(t)] 
 

                           
 

 

         Rz = [cos(t) -sin(t) 0; sin(t) cos(t) 0; 0 0 1] 
 

                                                     
 

 

 

 Rotate About Each Axis in Three Dimensions 

First, rotate the surface about the x-axis by 45 degrees counterclockwise. 

 

        xyzRx = Rx*[x;y;z]; 

        Rx45 = subs(xyzRx, t, pi/4); 

 

        fsurf(Rx45(1), Rx45(2), Rx45(3)) 

        title('Rotating by \pi/4 about x, counterclockwise') 

        axis equal 

 

 

 

Figure 6.10 Rotating by π/4 about x 
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Rotate about the z-axis by 90 degrees clockwise. 

       xyzRz = Rz*Rx45; 

       Rx45Rz90 = subs(xyzRz, t, -pi/2); 

 

       fsurf(Rx45Rz90(1), Rx45Rz90(2), Rx45Rz90(3)) 

       title('Rotating by \pi/2 about z, clockwise') 

       axis equal 
 

 

 

Figure 6.11  Rotating by π/2 about z 
 

 

Rotate about the y-axis by 45 degrees clockwise. 

       xyzRy = Ry*Rx45Rz90; 

       Rx45Rz90Ry45 = subs(xyzRy, t, -pi/4); 

 

       fsurf(Rx45Rz90Ry45(1), Rx45Rz90Ry45(2), Rx45Rz90Ry45(3)) 

       title('Rotating by \pi/4 about y, clockwise') 

       axis equal 

 

Figure 6.12  Rotating by π/4 about y 
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 Scale and Rotate 

Scale the surface by the factor 3 along the z-axis. You can multiply the expression for z by 3, 

z = 3*z. The more general approach is to create a scaling matrix, and then multiply the 

scaling matrix by the vector of coordinates. 

            S = [1 0 0; 0 1 0; 0 0 3]; 

         xyzScaled = S*[x; y; z] 
 

 

 
 

 

       fsurf(xyzScaled(1), xyzScaled(2), xyzScaled(3)) 

       title('Scaling by 3 along z') 

       axis equal 

 

 

Figure 6.13  Scaling by 3 along z 

 

Rotate the scaled surface about the x-, y-, and z-axis by 45 degrees clockwise, in order z, 

then y, then x. The rotation matrix for this transformation is as follows. 

       R = Rx*Ry*Rz 
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Use the rotation matrix to find the new coordinates 

        xyzScaledRotated = R*xyzScaled; 

        xyzSR45 = subs(xyzScaledRotated, t, -pi/4); 

 
 

 

Plot the surface. 

      fsurf(xyzSR45(1), xyzSR45(2), xyzSR45(3)) 

       title('Rotating by \pi/4 about x, y, and z, clockwise') 

       axis equal 

 

 

 

Figure 6.14  Rotating by π/4 about x , y and z 
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7. 3D ANIMATION 
 

In this example we will show how to control an object in a virtual world using the MATLAB 

object-oriented interface [12]. 

7.1 Create a World Object  

We begin by creating an object of class VRWORLD that represents the virtual world. The 

VRML file constituting the world was previously made using the 3D World Editor contained 

in the Simulink 3D Animation product. The name of the file is VRMOUNT.WRL. 

        world = vrworld('vrmount.wrl'); 

 

7.2 Open and View the World 

The world must be opened before it can be used. This is accomplished using the OPEN 

command. 

                   open(world); 

       fig = view(world, '-internal'); 

       vrdrawnow; 

 

 

Figure 7.1  Virtual world 
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7.3 Examine the Virtual World Properties 

We can examine the properties of the virtual world using the GET command. Note that the 

'FileName' and 'Description' properties contain the file name and description taken from the 

'title' property of the VRML file. Detailed descriptions of all the properties are beyond the 

scope of this example. 

 

        get(world) 

 

        Canvases = vr.canvas object: 0-by-0 

 Clients = 1 

 ClientUpdates = 'on' 

 Comment = '' 

 Description = 'VR Car in the Mountains' 

 Figures = vrfigure object: 1-by-1 

 FileName = char array: 1-by-65 

 Nodes = vrnode object: 13-by-1 

 Open = 'on' 

 Record3D = 'off' 

 Record3DFileName = '%f_anim_%n.wrl' 

 Recording = 'off' 

 RecordMode = 'manual' 

 RecordInterval = [0 0] 

 RemoteView = 'off' 

 Time = 0 

 TimeSource = 'external' 

 View = 'on' 

 

 

7.4 Finding Nodes of the World 

All elements in a virtual world are represented by VRML nodes. The behavior of any element 

can be controlled by changing the fields of the appropriate node(s). The NODES command 

prints out a list of nodes available in the world. 

 

       nodes(world) 

 

      View1 (Viewpoint) [VR Car in the Mountains] 

 Camera_car (Transform) [VR Car in the Mountains] 

 VPfollow (Viewpoint) [VR Car in the Mountains] 

 Automobile (Transform) [VR Car in the Mountains] 

 Wheel (Shape) [VR Car in the Mountains] 

 Tree1 (Group) [VR Car in the Mountains] 

 Wood (Group) [VR Car in the Mountains] 

 Canal (Shape) [VR Car in the Mountains] 

 ElevApp (Appearance) [VR Car in the Mountains] 

 River (Shape) [VR Car in the Mountains] 

 Bridge (Shape) [VR Car in the Mountains] 

 Road (Shape) [VR Car in the Mountains] 

 Tunnel (Transform) [VR Car in the Mountains] 
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7.5 Accessing VRML Nodes 

To access a VRML node, an appropriate VRNODE object must be created. The node is 

identified by its name and the world it belongs to. We will create a VRNODE object 

associated with a VRML node 'Automobile' that represents a model of a car on the road. In 

case it is not shown in the scene, there is no problem, it is hidden in the tunnel on the left. 

 

        car = vrnode(world, 'Automobile') 

         

        car =  

              vrnode object: 1-by-1 

              Automobile (Transform) [VR Car in the Mountains] 

 

 

7.6 Viewing Fields of Nodes 

VRML fields of a given node can be queried using the FIELDS command. We will see that 

there are fields named 'translation' and 'rotation' in the node list. We can move the car 

around by changing the values of these fields. 

 

        fields(car) 
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7. 7 Moving the Car Node 

Now we prepare vectors of coordinates that determine the car's movement. By setting them 

in a loop we will create an animated scene. There are three sets of data for the three phases 

of car movement. 

       z1 = 0:12; 

       x1 = 3 + zeros(size(z1)); 

       y1 = 0.25 + zeros(size(z1)); 

 

       z2 = 12:26; 

       x2 = 3:1.4285:23; 

       y2 = 0.25 + zeros(size(z2)); 

 

       x3 = 23:43; 

       z3 = 26 + zeros(size(x3)); 

       y3 = 0.25 + zeros(size(z3)); 

 

 

Now let's move the car along the first part of its trajectory. The car is moved by setting the 

'translation' field of the 'Automobile' node. 

      for i=1:length(x1) 

          car.translation = [x1(i) y1(i) z1(i)]; 

          vrdrawnow; 

          pause(0.1); 

       end 

 

 

Figure 7.2  Observer view 
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Figure 7.3  Driver view 

 

We will rotate the car a little to get to the second part of the road. This is done by setting the 

'rotation' property of the 'Automobile' node. 

          car.rotation = [0, 1, 0, -0.7]; 

          vrdrawnow; 

 

 

Figure 7.4  Rotation 
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Now we will pass the second road section. 

      for i=1:length(x2) 

          car.translation = [x2(i) y2(i) z2(i)]; 

          vrdrawnow; 

          pause(0.1); 

      end  

 

 

Figure 7.5  Second road section 

 

 

Figure 7.6  Driver view 
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Finally, we turn the car to the left again. 

       car.rotation = [0, 1, 0, 0]; 

       vrdrawnow; 

 

 

Figure 7.7 Left rotation 

Moving through the third part of the road 

      for i=1:length(x3) 

          car.translation = [x3(i) y3(i) z3(i)]; 

          vrdrawnow; 

          pause(0.1); 

      end 

 

 
 

Figure 7.8 Third part of the road 



 
60 

 

Figure 7.9  Driver view 

If we want to reset the scene to its original state defined in the VRML file, we just reload the 

world. 

        reload(world); 

        vrdrawnow; 

 

 
 

Figure 7.10 Virtual world - Observer view 
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Conclusion 
 

The main purpose of this dissertation was, firstly, to explore the fundamentals of how 

computers use linear algebraic transformations to create images, computational photos, and 

videos.  In particular, in the introductory chapters we attempted to introduce the reader to 

some of the most important elements of mathematics employed in computer graphics. We 

realized from the start that this would be a challenge for two reasons: one, knowing where 

to start, and the other, knowing where to stop. We assumed that most readers would 

already be interested in computer animation, games, virtual reality and so on and also had 

some idea about the mathematics behind it. So perhaps the chapters on vectors and 

matrices provided a common starting point. (chapters 2 and 3) 

Moreover, research was conducted on the latest developments of the subject (chapter 4) 

and the origins of computer graphics (chapter 1). 

In the last two chapters, many examples concerning algebraic transformations in computer 

graphics are presented and moreover, in chapter 7, with the use of MATLAB, an interesting 

application in 3D animation is shown. 

For many readers, what has been covered in this dissertation will be sufficient to enable 

them to design animations and create algorithms in MATLAB. For others, it will provide a 

useful stepping stone to more advanced texts on mathematics. But what we really hope is 

that to have managed to show that the mathematics related to the subject is not that 

difficult, especially when it can be explored and applied to an exciting and most interesting 

subject such as computer graphics. 
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