

TEI $\boldsymbol{\Delta Y T I K H \Sigma ~ E \Lambda \Lambda A \Delta A \Sigma ~}$
 ェXOAH $\Delta I O I K H \Sigma H \Sigma$ KAI OIKONOMIA Σ

TMHMA $\operatorname{\Delta IOIKH\Sigma H\Sigma ~EПIXEIPH\Sigma E\Omega N}$ (ПP $\Omega H N$ DIKइEO)
 МЕГОАОГГI

Дov́ ${ }^{2}$ ov Паvaүıஸ́т

AM 15728

Мєбодо́ $\boldsymbol{\gamma}^{\prime} 2018$

TEI Δ YTIKH Σ E $\Lambda \Lambda A \Delta A \Sigma$ Σ XO \wedge H Δ IOIKH $\Sigma H \Sigma$ KAI OIKONOMIA Σ

TMHMA \triangle IOIKH $\Sigma H \Sigma$ EПIXEIPH $\Sigma E \Omega N(\Pi P \Omega H N ~ \Delta I K \Sigma E O) ~$ MEटOАОГГI

Птиұıакŋ́ Ерү $\alpha \sigma i ́ \alpha$

 $\kappa \alpha \lambda \lambda \iota \varepsilon ́ \rho \gamma \varepsilon \iota \alpha ~ \tau \eta \varsigma ~ \delta \eta \mu \iota o v \rho \gamma \iota \kappa o ́ \tau \eta \tau \alpha \varsigma ~ \sigma \tau о ~ \pi \lambda \alpha i ́ \sigma \iota o ~ \tau \omega v ~ \sigma \pi o v \delta \dot{\omega} v$ тovৎ: $\delta \iota \alpha \pi \iota \sigma \tau \omega ́ \sigma \varepsilon \iota \varsigma ~ \kappa \alpha \iota \pi \rho о \tau \alpha ́ \sigma \varepsilon \iota \varsigma ~$

Дov́ ${ }^{2} 0 v$ Паvaүıஸ́т
AM 15728

В α Өๆ Паvаүıஸ́т α

 Т $\mu \neq \mu \alpha \tau о \varsigma$.

ПЕРІАНЧН

Н $\pi \alpha \rho о$ б́ α в $\rho \gamma \alpha \sigma i ́ \alpha ~ \sigma к о \pi o ́ ~ \varepsilon ́ \chi \varepsilon ı ~ \tau \eta ~ \lambda \varepsilon \pi \tau о \mu \varepsilon \rho \eta ́ ~ \mu \varepsilon \lambda \varepsilon ́ \tau \eta ~ \tau \eta \varsigma ~ \varepsilon ́ v v o l \alpha \varsigma ~ \tau \eta \varsigma ~$

 боүкєкрци́vа, $\sigma \tau о ́ \chi о \varsigma ~ \tau \eta \varsigma ~ \pi \alpha \rho о v ́ \sigma \alpha \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma ~ \eta ́ \tau \alpha \nu ~ \eta ~ \mu \varepsilon \lambda \varepsilon ́ \tau \eta ~ \tau \omega v ~ \sigma \tau \alpha ́ \sigma \varepsilon \omega \nu ~ \tau \omega v$

 $\mu \varepsilon \lambda \varepsilon ́ \tau \eta \varsigma ~ \delta о ́ к щ о ~ \eta ́ \tau \alpha \nu ~ v \alpha ~ \pi \rho \alpha \gamma \mu \alpha \tau о \pi о э \eta \theta \varepsilon i ́ ~ \mu ı \alpha ~ \lambda \varepsilon \pi \tau о \mu \varepsilon \rho \eta ́ s ~ к \alpha ı ~ \varepsilon \mu \pi \varepsilon \rho ı \sigma \tau \alpha \tau \omega \mu \varepsilon ́ v \eta$

ПINAKA ПEPIEXOMEN Ω N

ПЕРІ $Н Н \Psi Н ~$ 4
ПINAKA乏
ПEPIEXOMENQN 5
ЕІГАГ $\Omega Г Н$ 6
 8
1．1 H ENNOIA TH乏 \triangle HMIOYPГIKOTHTA乏 8
1．2 О АNЄР Ω ПINOг ЕГКЕФААОГ 18
1．3 OI BAटIKE Σ YNI $\Sigma T \Omega \Sigma E \Sigma$ TH $\Sigma ~ \Delta H M I O Y P Г I K O T H T A \Sigma ~$ 20
1．4．\triangle HMIOYPГIKOTHTA KAI XAPIइMATIKOTHTA 25
1．4．1．ПОІА ЕІNAI TA Σ YMПЕРІФОРІГTIKA KAI TA MA＠НГIAKA XAPAKTHPILTIKA T Ω N XAPI $\Sigma M A T K \Omega N-T A \Lambda A N T O Y X \Omega N ~ M A \Theta H T \Omega N ;$ 26
 29
2．1．$\Delta H M I O Y P Г I K O T H T A ~ K A I ~ E K П A I \Delta E Y \Sigma H ~$ 29
 ЕКПАІปЕҮГН 30
КЕФАААIO 3° ДHMIOYРГIKOTHTA $\Sigma T H N ~ Е К П A I \triangle E Y \Sigma H ~ K A I ~ \triangle I E @ N E I \Sigma ~$ OРГANILMOI 38
3．1．ПРОГРАММАТА ERASMUS 40
3．2．ПРОГРАММАТА COMENIUS 41
3.3 ПРОГРАММА AHELO 42
ГҮMПЕРАГМАТА 44
ВІВАІОГРАФІА 47

ЕІІАГ $\Omega Г Н$

 $\alpha \pi$ о́ $\gamma v \omega \sigma \tau о v ́ \varsigma ~ \psi v \chi о \lambda o ́ \gamma o v s ~ \kappa \alpha ı ~ \pi \alpha ı \delta \alpha \gamma \omega \gamma о v ́ \varsigma, ~ \pi \rho о к \varepsilon \mu \varepsilon ́ v о v ~ v \alpha ~ к \alpha \tau \alpha v о \eta ́ \sigma о v \mu \varepsilon ~ \tau о ~$

 $\varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma . ~ E ı \delta ı к o ́ \tau \varepsilon \rho \alpha$, $\sigma \tau о ́ \chi \circ \varsigma ~ \tau \eta \varsigma ~ \pi \alpha \rho о v ́ \sigma \alpha \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma ~ \eta ́ \tau \alpha \nu ~ \eta ~ \mu \varepsilon \lambda \varepsilon ́ \tau \eta ~ \tau \omega v ~ \sigma \tau \alpha ́ \sigma \varepsilon \omega v$

 $\pi \rho \alpha \gamma \mu \alpha \tau о \pi о$ ŋ́ $\theta \eta \kappa \varepsilon ~ \eta ~ \pi \alpha \rho \alpha \kappa \alpha ́ \tau \omega ~ \mu \varepsilon \lambda \varepsilon ́ \tau \eta ~ \sigma \varepsilon ~ \theta \varepsilon \omega \rho \eta \tau \iota \kappa o ́ ~ \mu o ́ v o ~ \varepsilon \pi i ́ \pi \varepsilon \delta o, ~ \chi \omega \rho ı \sigma \mu \varepsilon ́ v \eta ~ \sigma \varepsilon$ $\varepsilon \pi \mu \varepsilon ́ \rho о \cup \varsigma ̧ ~ \kappa \varepsilon \varphi \propto ́ \lambda \alpha ı \alpha$.

To $\theta \varepsilon \omega \rho \eta \tau \iota \kappa o ́ ~ \pi \lambda \alpha i ́ \sigma ı ~ \tau \eta \varsigma ~ \pi \alpha \rho о v ́ \sigma \alpha \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma ~ \chi \omega \rho i ́ \zeta \varepsilon \tau \alpha ı ~ \sigma \varepsilon ~ \tau \rho i ́ \alpha ~ к \varepsilon \varphi \alpha ́ \lambda \alpha ı \alpha ~ \pi о v ~$
 $\alpha v ต ́ \tau \alpha \tau \eta \varsigma ~ \varepsilon \kappa \pi \alpha i ́ \delta \varepsilon v \sigma \eta \varsigma ~ \kappa \alpha ı ~ \tau \alpha ~ \pi \rho о \gamma \rho \alpha ́ \mu \mu \alpha \tau \alpha ~ \pi о v ~ \pi \rho \alpha \gamma \mu \alpha \tau о \pi о ю и ́ v \tau \alpha ı ~ \beta \alpha \sigma ı \sigma \mu \varepsilon ́ v \alpha ~ \sigma \tau \eta v$
 غ́vvola $\tau \eta \varsigma ~ \delta \eta \mu ı о \cup \rho \gamma ı \kappa o ́ \tau \eta \tau \alpha \varsigma ~ \mu \varepsilon ~ \alpha v \alpha \varphi о \rho \alpha ́ ~ \sigma \varepsilon ~ о р ı \sigma \mu о v ́ \varsigma ~ \kappa \alpha ı ~ \mu \varepsilon \lambda \varepsilon ́ \tau \varepsilon \varsigma ~ \pi о v ~ \varepsilon ́ \chi о v v ~$

 $\mu \alpha \theta \eta \tau \dot{\omega} v$.

 ($\pi . \chi$. $\mu \varepsilon ́ \theta o \delta o \varsigma ~ b r a i n s t o r m i n g, ~ \delta ı \alpha \lambda o ́ \gamma o v-\sigma ט \zeta ̧ \eta \tau \eta ́ \sigma \varepsilon \omega v, ~ \mu \kappa \kappa \rho о \delta \iota \delta \alpha \sigma к \alpha \lambda i ́ \alpha \varsigma) ~ \sigma \tau о \chi \varepsilon v ́ o v \tau \alpha \varsigma ~$
 $\mu \varepsilon ́ \sigma \omega \nu$ (ТПЕ), $\tau \alpha$ олоі́а $\varepsilon \iota \delta \iota \kappa o ́ \tau \varepsilon \rho \alpha ~ \sigma \tau ı \varsigma ~ \mu \varepsilon ́ \rho \varepsilon \varsigma ~ \mu \alpha \varsigma ~ \alpha \sigma к о и ́ v ~ \mu \varepsilon \gamma \alpha ́ \lambda \eta ~ \varepsilon \pi ı \rho \rho о \eta ́ ~ \sigma \tau \eta ~$

 $\alpha v \alpha \pi \tau v ์ \xi \varepsilon 1 ~ \pi \varepsilon \rho \alpha ı \tau \varepsilon ́ \rho \omega ~ \tau \eta ~ \delta \eta \mu ю \cup \rho \gamma ı к о ́ \tau \eta \tau \alpha ́ ~ \tau о v . ~ Х \alpha \rho \alpha к \tau \eta \rho ı \tau \tau ı \alpha ́ ~ \pi \alpha \rho \alpha \delta \varepsilon i ́ \gamma \mu \alpha \tau \alpha$

KEФAムAIO 1° : H MEAETH THE $\triangle H M I O Y P \Gamma I K O T H T A \Sigma ~$

What is

Creativity?

 $\zeta \omega \eta ́ \varsigma ~ \tau o v ~ \varepsilon i ́ v \alpha l ~ ı \kappa \alpha v o ́ ̧ ~ v \alpha ~ \pi \alpha \rho \alpha ́ \gamma \varepsilon ı ~ к \alpha ı v o \tau o ́ \mu \varepsilon \varsigma ~ \imath \delta \varepsilon ́ \varepsilon \varsigma, ~ v \alpha ~ \varepsilon \pi \imath \lambda v ́ \sigma \varepsilon ı ~ \delta v ́ \sigma к о \lambda \alpha ~ \pi \rho о \beta \lambda \eta ́ \mu \alpha \tau \alpha$

 Г $\alpha \lambda \lambda о \varsigma ~ \sigma v \gamma \gamma \rho \alpha \varphi \varepsilon ́ \alpha \varsigma, ~ \gamma 1 \alpha ~ \pi \alpha \rho \alpha ́ \delta \varepsilon \gamma \gamma \mu \alpha$, o Albert Camus $\varepsilon \dot{i ́ \chi \varepsilon} \alpha v \alpha \varphi \varepsilon ́ \rho \varepsilon เ: ~ « . . . \tau o ~ v \alpha$ $\delta \eta \mu \iota o v \rho \gamma \varepsilon i ́ \varsigma ~ \varepsilon i ́ v \alpha l ~ \sigma \alpha v ~ v \alpha ~ \zeta ̌ ı \varsigma ~ \delta o ́ o ~ \varphi о \rho \varepsilon ́ \varsigma », ~ о ~ I \rho \lambda \alpha v \delta o ́ s ~ \sigma v \gamma \gamma \rho \alpha \varphi \varepsilon ́ \alpha \varsigma ~ O s c a r ~ W i l d e ~$

[^0]

 $\mu \varepsilon \gamma \alpha ́ \lambda о \varsigma$ Гє $\rho \mu \alpha v o ́ s ~ \psi \cup \chi \alpha v \alpha \lambda v \tau \eta ́ \varsigma ~ E r i c h ~ F r o m m ~ \delta ı \alpha \tau ט ́ \pi \omega \sigma \varepsilon ~ \pi \omega \varsigma: ~ « . . O l ~ \pi \varepsilon \rho l \sigma \sigma o ́ t \varepsilon \rho o l ~$
 $\gamma \varepsilon \nu v ı \varepsilon ́ \sigma \alpha l \pi \rho о \tau о и ́ \pi \varepsilon \theta \dot{\alpha} v \varepsilon \iota \varsigma »^{2}$.

 $\pi \varepsilon \delta i ́ \alpha$ о́лоv $\alpha v \tau \grave{~} \mu \varepsilon \lambda \varepsilon \tau \eta \dot{\eta} \theta \eta \kappa \varepsilon$. Гı $\alpha \nu \alpha \mu \eta \nu \varepsilon \mu \pi \lambda \alpha \kappa о и ́ \mu \varepsilon$ о́ $\mu \omega \varsigma ~ \sigma \tau \eta \nu \alpha \pi \varepsilon \rho \alpha \nu \tau о \sigma v ́ v \eta \tau \omega v$

 \& Kaî̀ $\alpha, 2007: 527):$

1. $\mathrm{H} \pi 0 \sigma o ́ \tau \eta \tau \alpha \tau \omega \nu$ เ $\delta \varepsilon \omega ́ v$

 $\sigma \dot{v \theta \varepsilon \sigma \eta ~ \kappa \alpha l ~ \sigma \chi \varepsilon \delta \iota \alpha \sigma \mu o ́ » ~(\Sigma ı o ́ v \alpha \varsigma ~ \& ~ Z \eta \mu ı \alpha v i ́ t \eta ร ~ \& ~ K о v \tau \alpha \lambda \varepsilon ́ \lambda \eta ~ \& ~ П \alpha v \alpha \gamma о \pi о v ́ \lambda о v, ~}$

[^1]

 2006：38）：
$\checkmark \boldsymbol{\eta} \gamma \mathbf{v} \omega \sigma \eta$ $\delta \eta \lambda \alpha \delta \dot{\eta} \eta$ ィк $\alpha v o ́ \tau \eta \tau \alpha$ v α к $\alpha \tau \alpha v o \varepsilon i ́$,

$\checkmark \boldsymbol{\eta} \mu \nu \eta ́ \mu \eta$ о́лоv $\alpha \varphi о \rho \alpha ́ ~ \tau \eta ~ \delta v v \alpha \tau o ́ \tau \eta \tau \alpha ~ \gamma ı \alpha ~ \tau \eta \nu$

 $\delta \eta \mu ⿺ 𠃊 \rho \gamma \iota к о ́ \tau \eta \tau \alpha \varsigma \kappa \alpha \tau \alpha ́$ tov Guilford ${ }^{3}$ ．
 $\sigma \varepsilon$ ह́v $\alpha \pi \rho o ́ \beta \lambda \eta \mu \alpha$ ．

Eívaı $\varphi \alpha v \varepsilon \rho$ ó $\lambda 0 \imath \pi o ́ v \pi \omega \varsigma$ o Guilford $\delta \varepsilon v$ סíveı кацía $\sigma \eta \mu \alpha \sigma i ́ \alpha ~ \sigma \tau о ~ \pi \varepsilon \rho ı \beta ́ \alpha \lambda \lambda о v ~$

 $\tau \eta \nu \varepsilon \kappa \delta \dot{\eta} \lambda \omega \sigma \eta$ каı $\tau \eta \nu \alpha v \alpha ́ \pi \tau v క ̧ \eta ́ ~ \tau \eta \varsigma . ~ O ı ~ \alpha \nu \eta \sigma v \chi i ́ \varepsilon \varsigma ~ \tau о v ~ G u i l f o r d ~ к \alpha ı ~ к и р i ́ \omega \varsigma ~ \eta ~$

[^2]

 $\varepsilon \pi i ́ \lambda v \sigma \eta ~ \delta ı \alpha \rho о ́ \rho \omega v ~ \pi \rho о \beta \lambda \eta \mu \alpha ́ \tau \omega v$. Ако́ $\mu \alpha$ каı о тро́лоऽ $\mu \varepsilon$ тоv олоі́о $\chi \rho \eta \sigma \mu о \pi о ь о ́ \sigma \varepsilon$

 www.economu.wordpress.com).

2. Ot $\gamma v ต ́ \sigma \varepsilon ı \varsigma ~ \tau о v ~ \alpha \tau o ́ \mu о v ~$

 (1988), o S. M. Smith (1995), o R. Weisberg (1988, 1995, 1999), $\pi \rho \circ \sigma \varepsilon \gamma \gamma$ í̧ouv $\tau \eta$

 $\pi \rho о \sigma \pi \alpha ́ \theta \varepsilon ı \alpha ~ \tau о v ~ v \alpha ~ \alpha ı \tau ь \lambda о \gamma \eta ́ \sigma \varepsilon ı ~ \gamma ı \alpha \tau i ́ ~ к \alpha ́ \pi о ı \alpha ~ \alpha ́ \tau о \mu \alpha ~ \varepsilon i ́ v \alpha ı ~ \pi ı о ~ \delta \eta \mu ı о \rho \gamma ı к \alpha ́ ~ \alpha \pi о ́ ~$

 $\alpha \pi \varepsilon ́ v \alpha v \tau \imath ~ \sigma \varepsilon ~ \alpha v \tau o ́ ~ \pi o v ~ \delta \eta \mu ı о \nu \rho \gamma о v ́ v . ~ \Theta \varepsilon \omega \rho о v ́ \sigma \varepsilon ~ \alpha \pi \lambda \alpha ́ ~ \pi \omega \varsigma ~ \tau \alpha ~ ı \delta ı \alpha i ́ t \varepsilon \rho \alpha ~ ı к \alpha v \alpha ́ ~ \alpha ́ \tau о \mu \alpha ~$

 Sternberg (2003), \&íval $\gamma \varepsilon \gamma o v o ́ s ~ \pi \omega \varsigma ~ \eta$
 $\sigma \alpha \nu \mu i ́ \alpha ~ \tau \alpha v \tau o ́ \sigma \eta \mu \eta ~ \varepsilon ́ v v o ı \alpha ~ \tau \eta \varsigma ~ \varepsilon i \delta i ́ \kappa \varepsilon v \sigma \eta \varsigma . ~$ A π ó $\tau \eta \nu \dot{\alpha} \lambda \lambda \eta \pi \lambda \varepsilon v \rho \dot{\alpha}$, o Ronald Finke

 ठıккрível... тovৎ $\varepsilon \mu \pi v \varepsilon v \sigma \mu \varepsilon ́ v o v \varsigma ~ \alpha \pi o ́ ~ \tau o v \varsigma ~$

 غíб人l $\alpha v o l \kappa \tau o ́ \varsigma ~ \sigma \varepsilon ~ v \varepsilon ́ o v \varsigma ~ \tau \rho o ́ \pi o v \varsigma ~ \alpha v \tau i ́ \lambda \eta \psi \psi \varsigma ~ \tau \omega v ~$ $\pi \rho \alpha \gamma \mu \alpha ́ \tau \omega v$, тo $v \alpha$ é $\chi \varepsilon l \varsigma ~ \varepsilon ́ v \sigma \tau ו к \tau о, ~ \tau o ~ v \alpha ~$

 $\tau \alpha v \tau o ́ \chi \rho o v \alpha$ ó $\lambda \alpha$ $\tau \alpha \pi \alpha \rho \alpha \pi \alpha ́ v \omega ~ \sigma \varepsilon ~ \sigma v v \delta v \alpha \sigma \mu o ́ ~ \mu \varepsilon ~$

 «غ $\lambda \alpha \sigma \tau เ \kappa \varepsilon ́ \varsigma » ~ \alpha \pi o ́ \psi \varepsilon ı \varsigma, ~ \delta \eta \lambda \alpha \delta \eta ́ ~ \alpha v \tau \varepsilon ́ \varsigma ~ \pi о v ~ \delta \varepsilon v$ $\alpha \nu \tau \downarrow \varepsilon \tau \omega \pi i \zeta$ боv $\mu \varepsilon \mu \varepsilon \pi \rho о \kappa \alpha \tau \alpha ́ \lambda \eta \psi \eta$, о́бо каı η

$\Sigma \tau \eta$ бuvé $\chi \varepsilon ı \alpha$ opıб $\mu \varepsilon ́ v o l ~ \varepsilon \rho \varepsilon v v \eta \tau \varepsilon ́ \varsigma, ~ к \alpha \tau \alpha ́ \alpha ~ к ט ́ \rho ı o ~ \lambda o ́ \gamma o ~ \eta ~ T e r e s a ~ A m a b i l e ~$

 $\varepsilon \sigma \omega \tau \varepsilon \rho \iota к о ́ ~ \psi \cup \chi ı к о ́ ~ \mu \alpha \varsigma ~ к о ́ \sigma \mu о ~ о ́ \pi \omega \varsigma ~ \gamma ı \alpha ~ \pi \alpha \rho \alpha ́ \delta \varepsilon \imath \gamma \mu \alpha ~ \eta ~ \chi \alpha \rho \alpha ́ ~ \tau \eta \varsigma ~ \varepsilon \pi i ́ \tau \varepsilon \cup \xi ̧ \eta \varsigma ~ \varepsilon v o ́ s ~$

 $\Sigma ט ́ \mu \varphi \omega v \alpha \mu \varepsilon$ тоv $\delta 1 \alpha \chi \omega \rho ı \sigma \mu o ́ ~ \alpha v \tau o ́ v ~ \eta ~ A m a b i l e ~(1996), ~ \alpha v \alpha \varphi \varepsilon ́ \rho \varepsilon ı ~ \pi \omega \varsigma ~ \tau \alpha ~ \varepsilon \sigma \omega \tau \varepsilon \rho ı к \alpha ́ ~$

4. To $\pi \varepsilon \rho \iota \beta \alpha ́ \lambda \lambda$ оv $\tau 0 v \alpha \tau o ́ \mu о v$

 $\pi \varepsilon \rho ı \beta \dot{\alpha} \lambda \lambda \mathrm{ov}$ 入oוтóv, $\theta \varepsilon \omega \rho \varepsilon i ́ t \alpha l ~ \omega \varsigma ~ \varepsilon ́ v \alpha \varsigma ~$ ако́ $\mu \eta$ таро́үоขтаऽ тоv каӨорі́לદ1 $\tau \eta v$

 $\alpha v \tau \eta ์ ~ ข \pi о \sigma \tau \eta \rho i ́ ̧ o v v ~ \pi о \lambda \lambda о i ́ ~ \varepsilon \rho \varepsilon v v \eta \tau \varepsilon ́ \varsigma ~ o ́ \pi \omega \varsigma ~$ о Mihaly Csikszentmihalyi (1988), о оло́́оऽ тоví̧cı $\pi \omega \varsigma$ סev عíval $\delta u v \alpha \tau o ́ v ~ \alpha \pi o ́ ~ \tau ı \varsigma ~$ $\pi \rho \alpha ́ \xi \varepsilon \iota \varsigma ~ \tau о v ~ \kappa \alpha ı ~ \mu o ́ v o ~ \tau о ~ \alpha ́ \tau о \mu о ~ v \alpha ~ \theta \varepsilon \omega \rho \varepsilon і ́ \tau \alpha ı ~$ $\delta \eta \mu ı$ ррүько́ $\alpha \lambda \lambda \alpha ́ \quad \theta \alpha \quad \pi \rho \varepsilon ́ \pi \varepsilon \iota \quad v \alpha$

 $\lambda \alpha \mu \beta \alpha ́ v o v \mu \varepsilon$ vло́чך $\mu \alpha \varsigma$ то́бо $\tau \eta \nu$ そ́ $\delta \eta$
 گєкıvŋ́бєı то вүдєíp $\mu \alpha ́$ тоv, о́бо каı то

Eлıт入દ́ov o Simonton（1998），סívદı $\mu \varepsilon \gamma \alpha ́ \lambda \eta ~ \sigma \eta \mu \alpha \sigma i ́ \alpha ~ \sigma \tau \eta \nu ~ \varepsilon ́ v v o l \alpha ~ \tau \eta S$

 $\chi \alpha \rho \alpha \kappa \tau \eta \rho \iota \sigma \tau \varepsilon i ́ ~ \tau \varepsilon \lambda \iota \kappa \alpha ́ ~ \eta ~ \pi \alpha \rho \alpha \lambda \lambda \alpha \gamma \eta \mathfrak{\eta} \varepsilon \kappa \varepsilon i ́ v \eta ~ \pi о v ~ \theta \alpha ~ \lambda \alpha ́ \beta \varepsilon ı ~ \theta \varepsilon \tau 兀 \kappa \eta ́ ~ \alpha \pi о \delta о \chi \eta ́ ~ \alpha \pi o ́ ~ \tau о ~$

 ка兀о́ $\operatorname{\tau ov}$ Simonton（ $\Xi \alpha v \theta \alpha ́ \kappa o v ~ \& ~ K \alpha i ̈ \lambda \alpha, ~ 2007: ~ 532) . ~ . ~$

5．＇Oגoı oı $\pi \alpha \rho \alpha \pi \alpha ́ v \omega \pi \alpha \rho \alpha ́ \gamma o v \tau \varepsilon \varsigma ~ \mu \alpha \zeta ̌ i ́$

 $\pi \alpha \rho \alpha ́ \delta \varepsilon \imath \gamma \mu$ ，v́ $\tau \tau \varepsilon \rho \alpha \alpha \pi o ́ ~ \tau \eta ~ \mu \varepsilon \lambda \varepsilon ́ \tau \eta ~ o ́ \lambda \omega v ~ \tau \omega v ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha ́ \tau \omega v ~ \tau \omega v ~ \delta ı \alpha \varphi o ́ \rho \omega v ~ \varepsilon \rho \varepsilon v v ळ ́ v ~$

Eníons，o Sternberg kaı o Todd Lubart（1991b，1993，1995，1996），

 $\lambda \varepsilon ı \tau \circ v \rho \gamma \varepsilon i ́ \omega \varsigma \varepsilon \pi \varepsilon v \delta v \tau \eta \prime \varsigma$ (investment theory of creativity), каӨஸ́ऽ $\mu \pi о \rho \varepsilon i ́ \alpha \pi o ́$

Kaı $\varepsilon v ต ́ ~ o ı ~ S t e r n b e r g ~ \kappa \alpha ı ~ o ~ L u b a r t ~ \theta \varepsilon \omega р о v ́ \sigma \alpha v ~ \pi \omega \varsigma ~ \delta \eta \mu ı о и р \gamma ı к o ́ \tau \eta \tau \alpha ~ \varepsilon ́ ́ v \alpha ı ~ o ~$
 $\pi \omega \varsigma$ ol Spearman каı Mednick (BáӨๆ, 2011: 12) $\theta \varepsilon \omega \rho о$ v́ $\alpha \nu \pi \omega \varsigma ~ \eta ~ \delta \eta \mu \iota o v \rho \gamma ı \kappa \eta ́ ~ \sigma к \varepsilon ́ \psi \eta$

 Паípvoviая $\mu l \alpha$ раıvo $\mu \varepsilon v i \kappa \alpha ́ ~ \mu \eta ~ \chi \rho \eta ́ \sigma \mu \eta ~$

 $\alpha v \alpha \gamma к \alpha i ́ \alpha ~ \gamma 1 \alpha ~ \tau \eta \nu ~ \pi \varepsilon \rho \alpha ́ \tau \omega \sigma \eta ~ \tau о v ~ \varepsilon ́ \rho \gamma о v ~$
 $\alpha \xi ъ \lambda o ́ \gamma \eta \sigma \eta ~ \tau о v ~ \delta \eta \mu ю v \rho \gamma เ к о v ́ ~ \alpha \tau o ́ \mu о v . ~$ Béßala ка兀о́ $\tau 0 \cup \varsigma$ Wallach каı Kogan

 O $\pi \omega \varsigma$ o Guilford ε と́ $\sigma \iota ~ \kappa \alpha ı ~ o ı ~ B a r r o n ~ к \alpha ı ~ H a r r i n g t o n ~(1981) ~ \tau \varepsilon i ́ v o v v ~ \pi \rho o s ~ \tau \eta v ~$

 $\lambda v ́ \sigma \eta \varsigma . ~ В \varepsilon ́ ß \alpha ı \alpha ~ о ́ \sigma о ~ \pi ı о ~ \varepsilon v \rho \eta \mu \alpha \tau \iota к ́ ~ \eta ~ \lambda v ́ \sigma \eta ~ \tau о v ~ \pi \rho о \beta \lambda \eta ́ \mu \alpha \tau о \varsigma ~ \tau о ́ \sigma о ~ \delta \varepsilon i ́ \chi v \varepsilon ı ~ v \alpha ~$

$\alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha \mu \varepsilon ́ \sigma \alpha \alpha \pi$ а́ $\alpha \lambda \lambda \varepsilon \varsigma ~ \tau \cup \chi \alpha i ́ \varepsilon \varsigma ~ ŋ ́ ~ \pi \rho о \mu \varepsilon \lambda \varepsilon \tau \eta \mu \varepsilon ́ v \varepsilon \varsigma ~ \delta ı \alpha \delta ı к \alpha \sigma i ́ \varepsilon \varsigma . ~ Г ı \alpha ~ \tau о ง \varsigma ~$

 Sternberg (1985) каı Feldman (1986) оı олоі́кодоv́Ө $\eta \sigma \alpha \nu \tau \eta \nu \varepsilon \xi \dot{\varepsilon} \lambda \iota \xi ̆ \eta ~ \varepsilon v o ́ ̧ ~ к \alpha ı ~ \mu o ́ v o v ~$

 тov̧ $\alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \mu \tau \iota \kappa о ́ \tau \eta \tau \alpha$.
'Oбо $\pi \alpha ́ v \tau \omega \varsigma ~ \kappa \alpha ı ~ v \alpha ~ \pi \rho о \sigma \pi \alpha \theta о v ́ \mu \varepsilon ~ v \alpha$ орі́бочиє $\tau \eta \nu$ ह́vvola $\tau \eta \varsigma ~ \delta \eta \mu ю v \rho \gamma ъ к о ́ \tau \eta \tau \alpha \varsigma ~$ $\kappa \alpha \tau \alpha \lambda \alpha \beta \alpha i ́ v o v \mu \varepsilon \quad \pi \omega \varsigma ~ \mu o ́ v o ~ \sigma \varepsilon ~ к о \imath ะ \varepsilon ́ \varsigma ~$

 $\pi \rho \alpha \gamma \mu \alpha \tau \iota \kappa \dot{\alpha}$ í $\sigma \omega$ а $\alpha \mu o ́ \zeta \varepsilon ı ~ к а \lambda v ́ \tau \varepsilon \rho \alpha ~ \eta ~$ $\varepsilon \pi 1 \sigma \eta \dot{\mu} \alpha v \sigma \eta$ tov Davis (1992): «Yло́ $\rho \chi o v v$ $\dot{\alpha} \pi \varepsilon \imath \rho o l ~ о \rho \iota \sigma \mu o i ́ ~ \kappa \alpha l ~ \imath \delta \varepsilon ́ \varepsilon \varsigma ~ \gamma l \alpha ~ \tau \eta ~$

 $\chi \alpha \rho \tau i »$ ($\Xi \alpha v$ Ө́́коv \& Kaïh $\alpha, 2007$).

Δ пиıоируіко́тпта?

Katà autó tov тро́тo n
ōnиıоирүıкótnta sivaı adúvatov va
 оробиó. Eival xapakтnolotikǹ n ámoun tou Davis (1992):
Ymapxour tóool mepinou opronot.
Ocupies кa roéses va m
onnuoupvinómita dool kal al ávepowmol nou éxour voápel ms 1 öés rous oe éva nouníán xapri.

1.2 O Av日pஸ́лıvos Е $\gamma \kappa \varepsilon ́ \varphi \alpha \lambda о \varsigma$

 $\lambda \varepsilon \iota \tau о \cup \rho \gamma i ́ \alpha ~ \tau о \cup \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \sigma v \mu \beta \alpha ́ \lambda \lambda \varepsilon ı ~ \alpha к о ́ \mu \alpha ~ \kappa \alpha ı ~ \sigma \tau \eta \nu ~ \alpha v \alpha ́ \pi \tau v \xi ̆ \eta ~ \tau \eta \varsigma$ $\delta \eta \mu$ оир $\boldsymbol{\kappa \kappa}$ о́т $\eta \tau \alpha \varsigma^{4}$ ．

 avtóv عíval ol $\varepsilon \xi \xi^{\prime} 丂^{5}$ ：

－O $\beta \rho \varepsilon \gamma \mu \alpha \tau \iota \kappa o ́ s ~ \lambda o \beta o ́ s, ~ o ́ \pi о v ~ \alpha v \tau o ́ s ~ \varepsilon ́ \chi \varepsilon ı ~ v \alpha ~ \kappa \alpha ́ v \varepsilon ı ~ \mu \varepsilon ~ \tau \eta \nu ~ \alpha \nu \tau i ́ \lambda \eta \psi \eta, ~ \mu \varepsilon ~ \tau о ~ v \alpha ~$
 аí $\theta \eta \sigma \eta ~ \tau \eta \varsigma ~ \alpha \varphi \eta ́ \varsigma ~ \kappa \alpha \theta \omega ́ \varsigma ~ \kappa \alpha ı ~ \lambda \varepsilon ı \tau о \cup p \gamma i ́ \varepsilon \varsigma ~ \tau \eta \varsigma ~ \gamma \lambda \omega ́ \sigma \sigma \alpha \varsigma ~ \kappa \alpha ı ~ \tau \eta \varsigma ~ \alpha v \alpha ́ \gamma v \omega \sigma \eta \varsigma . ~$

－To $\delta \varepsilon \xi i ́ ~ \eta \mu \iota \sigma \varphi \alpha i ́ p ı 0, ~ \varepsilon \lambda \varepsilon ́ \gamma \chi \varepsilon ı ~ \tau \eta \nu ~ \alpha \rho ı \sigma \tau \varepsilon \rho \eta ́ ~ \pi \lambda \varepsilon \cup \rho \alpha ́ ~ \tau о v ~ \sigma ف ́ \mu \alpha \tau o ́ s ~ \mu \alpha \varsigma . ~$

[^3]

 $\varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma i ́ \alpha ~ \tau \omega \nu ~ \alpha к о и \sigma \tau \iota \kappa \omega ́ v ~ \varepsilon \rho \varepsilon \theta \iota \sigma \mu \alpha ́ \tau \omega \nu ~ к . \alpha . ~$

 то $\alpha \rho \chi$ ко́ $\mu \varepsilon ́ \sigma o ~ \gamma ı \alpha ~ \tau \eta \nu ~ \pi \alpha \rho \alpha \gamma \omega \gamma \eta ́ ~ \tau \eta \varsigma . ~$ 'ЕХочнє $\mathfrak{\eta} \delta \eta ~ \alpha \nu \alpha \varphi \varepsilon ́ \rho \varepsilon ı ~ \pi \alpha \rho \alpha \pi \alpha ́ v \omega$, ó τ
 тŋร "алок入ívovoаs бкદ́чๆร", аvтท́s $\delta \eta \lambda \alpha \delta \dot{\eta} \pi 0 v$ غ́ $\chi \varepsilon 1 ~ \tau \eta \nu$ ккаvótๆта $\nu \alpha$ бла́ع1 $\sigma u v \varepsilon \chi \omega ́ s ~ \tau \alpha ~ \sigma \chi \eta ́ \mu \alpha \tau \alpha ~ \tau \eta \varsigma ~$ $\varepsilon \mu \pi \varepsilon \iota \rho^{\prime} \alpha \varsigma »$. 'Otav то $\mu v \alpha \lambda o ́$ عvós
 $\alpha \sigma \tau \alpha \mu \alpha ́ \tau \eta \tau \alpha, \quad \nu \alpha \quad \varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha ́ \zeta \varepsilon \tau \alpha \downarrow$ ठı́́яора $\pi \rho о \beta \lambda \eta ́ \mu \alpha \tau \alpha$ каı $v \alpha$ $\alpha v \alpha \kappa \alpha \lambda ט ́ \pi \tau \varepsilon 1 ~ \alpha \kappa o ́ \mu \eta ~ \pi \varepsilon \rho ı \sigma \sigma o ́ \tau \varepsilon \rho \alpha, ~ v \alpha$

[^4]

 то $\lambda о ́ \gamma o$ opí̧ovtal каl $\omega \varsigma ~ \tau \alpha ~ \tau \varepsilon ́ \sigma \sigma \varepsilon \rho \alpha ~ P ~ \tau \eta \varsigma ~$ $\delta \eta \mu$ оорүко́тๆтая (the four Ps of creativity => Process, Product, Person, Press ${ }^{7}$). T α 4Ps $\tau \eta \varsigma$

3. Tо бпигоvрүгко́ ќтодо

Пı аvадитıко́:

1. Н $\delta \iota \alpha \delta \iota \kappa \alpha \sigma^{\prime} \alpha \boldsymbol{\delta \eta \mu \iota o v \rho \gamma เ \kappa \eta ́ \varsigma ~} \sigma \kappa \varepsilon ́ \psi \eta \varsigma$

 $\pi \rho \omega \tau о ́ \tau v \pi \varepsilon \varsigma ~-~ к \alpha \iota v o \tau o ́ \mu \varepsilon \varsigma ~ \varepsilon v \alpha \lambda \lambda \alpha \kappa \tau \iota \kappa \varepsilon ́ \varsigma, ~ \gamma ı \alpha ~ \tau \eta v ~ \varepsilon \pi i ́ \lambda v \sigma \eta ~ \tau \omega v ~ \delta ı \alpha \varphi о ́ \rho \omega v ~ \pi \rho о \beta \lambda \eta \mu \alpha ́ \tau \omega v$,
 ह́vas aлó tov̧ $\pi \rho \omega \tau о \pi o ́ \rho o v s ~ о ~$
 $\boldsymbol{\alpha \pi о к \lambda i ́ v o v \sigma \alpha \varsigma ~ \sigma к \varepsilon ́ ч \eta \varsigma , ~ \eta ~ о л о i ́ \alpha ~}$ عíval $\alpha ́ \mu \varepsilon \sigma \alpha ~ \sigma v v v \varphi \alpha \sigma \mu \varepsilon ́ v \eta ~ \mu \varepsilon ~ \tau \eta \nu$ $\delta \eta \mu \ldots \nu \rho \gamma \iota \kappa \eta$ бкє́ $\eta, \delta \eta \lambda \alpha \delta \dot{\eta} \tau \eta \nu$ д́ $\mu \varepsilon \tau \rho \eta ~ \varepsilon \xi \alpha \gamma \omega \gamma \eta ́ ~ \pi о \lambda \lambda \omega ́ v ~ к \alpha ı$ $\delta 1 \alpha \varphi o ́ \rho \omega v ~ \lambda v ́ \sigma \varepsilon \omega v$ бє ह́v人 $\pi \rho о ́ \beta \lambda \eta \mu \alpha$. 'Еvas $\delta \eta \mu \ldots$ р γ וко́я

$\Delta \eta \mu$ ооррүки́ бкв́ $\psi \eta$ - Агок入ivouба

- $v \alpha \rho \omega \tau \alpha \dot{\alpha}:$
- $\boldsymbol{\tau}$,
- $\pi \dot{\omega} \varsigma \kappa \alpha$
- по́tع,

 $\alpha \pi \varepsilon v \theta \varepsilon i ́ \alpha \varsigma ~ v \alpha ~ \sigma \kappa \varepsilon \varphi \tau \varepsilon i ́ ~ \varepsilon к \alpha \tau о v \tau \alpha ́ \delta \varepsilon \varsigma ~ \tau р о ́ \pi о v \varsigma ~ к \alpha l ~ \mu \varepsilon ́ \sigma \alpha ~ o ́ \pi о v ~ \mu \pi о р \varepsilon i ́ ~ v \alpha ~ \tau \eta v ~$

 $\eta \mu \iota \sigma \varphi \alpha i ́ p ı$ тоv $\varepsilon \gamma \kappa \varepsilon \varphi \alpha ́ \lambda о v ~ \varepsilon к \varepsilon i ́ ~ \alpha \pi о ́ ~ о ́ \pi о v ~ \pi \eta \gamma \alpha ́ \zeta о v v ~ \eta ~ \varphi \alpha v \tau \alpha \sigma i ́ \alpha ~ к \alpha ı ~ \eta ~$ ঠףцıоирүıко́тๆта. Гı’ $\alpha v \tau o ́ ~ \tau о ~ \lambda o ́ \gamma o ~ к \alpha ı ~ о ~ M a c k i n n o n ~(1962) ~ \varepsilon \pi ı \sigma \eta \mu \alpha i ́ v \varepsilon ı ~ \tau \eta ~ \sigma \eta \mu \alpha \sigma i ́ \alpha ~$

 $\varepsilon v o ́ \rho \alpha \sigma \eta ~ \alpha \rho \chi ı \alpha ́, ~ к \alpha \tau \alpha \lambda \dot{\gamma} \gamma \varepsilon \iota ~ \tau \varepsilon \lambda ı \kappa \alpha ́ ~ \sigma \tau \eta ~ \gamma \varepsilon ́ v \nu \eta \sigma \eta ~ к \alpha ı ~ \pi \rho о \omega ́ \theta \eta \sigma \eta ~ \pi о \lambda \lambda \omega ́ v ~ к \alpha ı v о т о ́ \mu \omega v ~$

 www.repository.edulll.gr www.authorstream.com).

2. To $\delta \eta \mu ⿺ 0 v \rho \gamma \iota \kappa o ́ \pi \rho o i ̄ o ́ v$

 $\alpha \pi o ́ \delta \varepsilon ı \check{\eta ~ \gamma l \alpha ~ \tau \eta ~ \delta \eta \mu ı o v \rho \gamma ı \kappa o ́ \tau \eta \tau \alpha ~ \varepsilon v o ́ s ~ \alpha \tau o ́ \mu о v, ~ \pi \alpha \rho \alpha ́ ~ \mu o ́ v o ~ \tau \eta v ~ \pi \alpha \rho \alpha \tau \eta ́ \rho \eta \sigma \eta ~ к \alpha l ~}$

 2013).

3. То $\delta \eta \mu \iota о v \rho \gamma \iota \kappa o ́ ~ \alpha ́ \tau о \mu о ~$

 $\pi \omega \varsigma \tau \alpha \alpha \dot{\alpha} \tau о \mu \alpha \mu \varepsilon v \psi \eta \lambda o ́ ~ \delta \varepsilon i ́ \kappa \tau \eta ~ v o \eta \mu о \sigma u ́ v \eta \varsigma(I Q), \pi о v$
 غ́ $<$ оиv $\alpha \pi о к \tau \eta ́ \sigma \varepsilon ı ~ \mu \varepsilon \gamma \alpha ́ \lambda о ~ о ́ \gamma к о ~ \gamma \vee ต ́ \sigma \varepsilon \omega v, ~$

 عíval таро́ $\lambda \lambda \eta \lambda \alpha$ каı $\delta \eta \mu \ldots$ орүюкоí. $\quad \Sigma \eta \mu \alpha \sigma i ́ \alpha$

 इıótac, 2011: 35• Гıß ${ }^{2} v \alpha$,: 44• www.lib.teicrete.gr).

 2005: 6):

 $\mu \varepsilon \tau \alpha \beta \alpha i ́ v o v v \alpha ́ \mu \varepsilon \sigma \alpha \alpha \pi$ ó $\tau 0$ ह́v $\alpha \pi \rho o ́ \beta \lambda \eta \mu \alpha \sigma \tau o \alpha ́ \lambda \lambda \lambda$.

 $\tau \eta \vee \varepsilon \vee \alpha \lambda \lambda \alpha \gamma \eta \chi^{\kappa \alpha ı} \tau \eta \nu \pi \rho \omega \tau о \tau v \pi i ́ \alpha$.

 $\varepsilon v \delta ı \alpha \varphi \varepsilon ́ \rho o v ~ \kappa \alpha ı ~ \lambda \varepsilon \pi \tau \tau \mu \varepsilon ́ \rho \varepsilon ı \alpha . ~ ' E v \alpha ~ \gamma v \omega \sigma \tau o ́ ~ \sigma \varepsilon ~ o ́ \lambda о v \varsigma ~ \mu \alpha \varsigma ~ \pi \alpha \rho \alpha ́ \delta \varepsilon \imath \gamma \mu \alpha, ~ \varepsilon i ́ v \alpha ı ~ \alpha v \tau o ́ ~ \tau о v ~$

 2006).
'Oбov apopá tov Taylor (Гко́vıo̧, 2006: 3), $\sigma \tau \eta$ 《 $\lambda i ́ \sigma \tau \alpha » ~ \tau \omega v$
 $\alpha к о ́ \mu \eta \tau \alpha \varepsilon \xi \xi_{\eta}^{\varsigma}:$

- Аขтоvоцía каı аvто́ркєıа
- Проодєvтוко́тๆта
- Kvрıархıко́тŋта
- Подил λ око́тпта

- Парори \quad тко́тๆта каı 甲аขтаб́ía
- Өáp $\rho о$ каı тó $\lambda \mu \eta$
－Avtó－$\varepsilon \pi \imath \beta \varepsilon \beta \alpha i \omega \sigma \eta$

－Avto $\lambda \varepsilon \gamma \chi \circ$
－Роли́ $\pi \rho о \varsigma$ то $\mu \eta$ 入оүוкó

4．To $\delta \eta \mu \iota о v \rho \gamma \iota \kappa o ́ ~ \pi \varepsilon \rho ı \beta \alpha ́ \lambda \lambda \lambda v$

$\mathrm{M} \varepsilon \lambda_{i}^{\prime} \alpha$ 人 $\lambda о ́ \gamma 1 \alpha, \kappa \alpha \tau \alpha \lambda \alpha \beta \alpha i ́ v o v \mu \varepsilon$ $\pi \omega \varsigma ~ \gamma 1 \alpha$ v $\alpha \mu \pi о \rho \varepsilon ́ \sigma о v \mu \varepsilon ~ v \alpha ~ \varepsilon к \varphi р \alpha ́ \sigma о \vartheta \mu \varepsilon \tau \eta$ $\delta \eta \mu ı$ орүюко́тๆто́ $\mu \alpha \varsigma, \tau \eta ~ \varphi \alpha \nu \tau \alpha \sigma i ́ \alpha ~ к \alpha ı ~ \tau \eta \nu$ غ́ $\mu \pi v \varepsilon v \sigma \eta ́ ~ \mu \alpha \varsigma, ~ \theta \alpha ~ \pi \rho \varepsilon ́ \pi \varepsilon ı ~ v \alpha ~ v \pi \alpha ́ \rho \chi \varepsilon ı ~ \varepsilon ́ v \alpha ~$ $\kappa \lambda i ́ \mu \alpha ~ \alpha \sigma \varphi \alpha ́ \lambda \varepsilon i \alpha \varsigma ~ к \alpha ৷ ~ v \pi о \delta о \chi \grave{\varsigma . ~ ' E v \alpha ~}$ $\kappa \lambda i ́ \mu \alpha$ ，七о олоío $v \alpha \mu \alpha \varsigma ~ \kappa \alpha ́ v \varepsilon ı ~ v \alpha ~ v ı ю ́ \theta о ข \mu \varepsilon ~$ $\varepsilon \lambda \varepsilon v \theta \varepsilon \rho i ́ \alpha ~ \sigma \tau \eta \nu \quad \varepsilon ́ \kappa \varphi \rho \alpha \sigma \eta ~ \tau \omega \nu$ $\sigma v v \alpha \iota \sigma \theta \eta \mu \alpha ́ \tau \omega v ~ \mu \alpha \varsigma ~ \kappa \alpha ı ~ о ́ \pi о v ~ \mu \varepsilon ́ \sigma \alpha ~ \sigma \varepsilon ~$ $\alpha v \tau o ́ \quad \theta \alpha$ vла́рхદ1 $\mu 1 \alpha$ « $\alpha \tau \mu o ́ \sigma \varphi \alpha ı \rho \alpha »$

 $\nu \alpha \varepsilon \kappa \varphi \rho \alpha \sigma \tau \varepsilon i ́ ~ \varepsilon \lambda \varepsilon \varepsilon ́ \theta \varepsilon \rho \alpha^{8}$.

«To $\alpha \lambda \eta \theta l v \alpha ́ ~ \delta \eta \mu \imath o v \rho \gamma ı к o ́ ~ \mu v \alpha \lambda o ́ ~ \sigma \varepsilon ~ \kappa \alpha ́ \theta \varepsilon ~ \pi \varepsilon \delta i ́ o ~ \delta \varepsilon v ~ \varepsilon i ́ v \alpha l ~ \tau i ́ \pi о \tau \alpha ~ \pi \varepsilon \rho ı \sigma \sigma o ́ т \varepsilon \rho o ~$ $\alpha \pi o ́ ~ \alpha v \tau o ́: ~ E v \alpha ~ \alpha v \theta \rho \omega ́ \pi \imath v o ~ \pi \lambda \alpha ́ \sigma \mu \alpha ~ \gamma \varepsilon v v \eta \mu \varepsilon ́ v o ~ \alpha v \tau ı \kappa \alpha v o v i \kappa \alpha ́, ~ \alpha \pi \alpha ́ v \theta \rho \omega \pi \alpha ~ \varepsilon v \alpha i ́ \sigma \theta \eta \tau o . ~$

 вкто́ৎ αv дпиıоvр $\gamma \varepsilon i »$.

Пєрд Млак

 $\mu \varepsilon ́ \rho \varepsilon \varsigma ~ \mu \alpha \varsigma, ~ \pi о \lambda v \alpha ́ \rho ı \theta \mu о \imath ~ к \alpha ı ~ \delta ı \alpha \varphi о \rho \varepsilon \tau ı к о і ́ ~ о р ı \sigma \mu о i ́ ~ \tau \eta \varsigma ~ \chi \alpha \rho ı \sigma \mu \alpha \tau ı к о ́ \tau \eta \tau \alpha \varsigma, ~ \varepsilon \varphi o ́ \sigma о v ~ \delta \varepsilon v ~$
 бі́үоvра $\mu \pi о \rho о$ $\mu \varepsilon$ v α тои́ $\mu \varepsilon$ عíval, $\pi \omega \varsigma ~ \varepsilon ́ v \alpha ~ \pi \alpha ı \delta i ́ ~ \theta \varepsilon \omega \rho \varepsilon i ́ t \alpha ı ~ \chi \alpha \rho ı \sigma \mu \alpha \tau ı к о ́ ~ o ́ \tau \alpha v ~$ $\delta 1 \alpha \pi \iota \sigma \tau \omega \theta \varepsilon i ́ ~ \pi \omega \varsigma ~ \varepsilon ́ \chi \varepsilon ı ~ \alpha v \varepsilon \pi \tau \cup \gamma \mu \varepsilon ́ v \varepsilon \varsigma ~ \delta \varepsilon \xi \xi ı ์ \tau \eta \tau \varepsilon \varsigma ~ \sigma \varepsilon ~ \sigma \chi \varepsilon ́ \sigma \eta ~ \mu \varepsilon ~ \tau \alpha ~ \alpha ́ \alpha \lambda \lambda \alpha ~ \pi \alpha ı \delta ı \alpha ́ ~ \tau \eta \varsigma$

[^5]

$\chi \alpha \rho \iota \sigma \mu \alpha \tau \iota \kappa \omega ́ v-\tau \alpha \lambda \alpha v \tau 0 v ́ \chi \omega v \alpha \tau o ́ \mu \omega v ;$

$\Omega_{\varsigma} \pi \rho \sigma \varsigma \tau \eta \nu \quad \sigma v \mu \pi \varepsilon \rho \iota \varphi о \rho \alpha ́$

* Kpívovv avбтๆןá тov عavtó tovs
* Eívaı $\tau \varepsilon \lambda \varepsilon \iota \frac{\mu \alpha v \varepsilon i ́ s ~}{\text { * }}$

* 'Exovr qıónoo

* \quad - $\tau \varepsilon ́ ~ \delta \varepsilon v ~ Ө \varepsilon \omega \rho o v ́ v ~ \tau \eta ~ \delta o v \lambda \varepsilon ı \alpha ́ ~ \tau o u s ~ \tau \varepsilon ́ \lambda \varepsilon เ \alpha ~$

* $\Sigma \nu \mu \mu \varepsilon \tau \varepsilon ́ \chi \circ v v \pi \varepsilon \rho เ \sigma \sigma o ́ \tau \varepsilon \rho о$ $\sigma \tau ı \varsigma ~ \sigma \cup \breve{\eta \tau \eta ́ \sigma \varepsilon ı \varsigma ~ \tau \omega \nu ~ \mu \varepsilon \gamma \alpha \lambda \nu \tau \varepsilon ́ \rho \omega v, ~ \gamma 1 \alpha ~}$

 $\alpha \lambda \lambda o v s$
* Xроvoтрß⿴ov́v

* $\quad \Delta i ́ v o u v \mu \varepsilon \gamma \alpha ́ \lambda \eta ~ \varepsilon ́ \mu \varphi \alpha \sigma \eta ~ \sigma \tau \iota \varsigma ~ \lambda \varepsilon \pi \tau о \mu \varepsilon ́ \rho \varepsilon \varepsilon є \varsigma . ~$

[^6]
$\Omega_{\varsigma} \pi \rho o \varsigma \tau \eta \mu \alpha \dot{\alpha} \theta \eta \sigma \eta$

 θ $\theta \mu о$ и́v $\tau \alpha ı \pi \lambda \eta \rho о \varphi о \rho i ́ \varepsilon \varsigma ~ \gamma \rho \eta ́ \gamma о \rho \alpha$

* Mäaívovv va $\delta 1 \alpha \beta \alpha ́ \zeta o v v ~ \gamma \rho \eta ́ \gamma о \rho \alpha ~ к \alpha l ~ \theta v \mu о и ́ v \tau \alpha ı ~ \tau \eta \nu ~ к \alpha ́ \theta \varepsilon ~$ $\lambda \varepsilon \pi \tau \circ \mu \varepsilon ́ \rho \varepsilon เ \alpha \alpha \pi o ́ \alpha v \tau o ́ ~ \pi o v ~ \delta ı \alpha \beta \alpha ́ \zeta ̆ o v v$
 $\chi \omega \rho i ́ \varsigma ~ ı \delta ı \alpha i ́ \tau \varepsilon \rho \eta ~ \varepsilon \xi \alpha ́ \sigma \kappa \eta \sigma \eta$

 $\pi \rho о \theta ७ \mu i ́ \alpha ~ \sigma \tau о ~ v \alpha ~ \alpha \sigma \chi \circ \lambda \eta \theta$ ои́v $\mu \varepsilon \pi \varepsilon \rho \iota \sigma \sigma o ́ \tau \varepsilon \rho \varepsilon \varsigma ~ \alpha \pi o ́ ~ \mu i ́ \alpha ~ \imath \delta \varepsilon ́ \varepsilon \varsigma ~ \kappa \alpha ́ \theta \varepsilon ~ \varphi о \rho \alpha ́ ~$

 $\kappa \alpha ́ \theta \varepsilon \lambda \varepsilon \pi \tau о \mu \varepsilon ́ \rho \varepsilon ı \alpha$

 к $\alpha ı$ ои́ $\rho \gamma 1 \alpha \pi \rho \alpha ́ \gamma \mu \alpha \tau \alpha$
 $\theta \varepsilon \omega \rho \circ$ v́v $\tau \eta \nu \tau \alpha ́ \xi \eta \eta ~ \varepsilon \pi \iota \varphi \alpha \nu \varepsilon 1 \alpha \kappa \eta ́$.

ЕКПАIДEYEH

2.1. $\triangle \eta \mu \imath v \rho \gamma \iota \kappa o ́ \tau \eta \tau \alpha \kappa \alpha ı ~ \varepsilon \kappa \pi \alpha i ́ \delta \varepsilon v \sigma \eta$

 тоv ıкаvótๆтє૬, $\omega \sigma \tau o ́ \sigma o ~ \alpha v \tau o ́ ~ \pi \alpha \rho \alpha \mu \varepsilon ́ v \varepsilon ı ~$
 бטvŋ́ $\theta \omega \varsigma ~ \eta$ орүа́vตбך тоv єклаıঠعvтıкои́

 Avtoí ol $\pi \alpha \rho \alpha ́ \gamma o v \tau \varepsilon \varsigma ~ \theta \alpha \pi \rho \varepsilon ́ \pi \varepsilon ı ~ v \alpha ~ \varepsilon ́ \chi о v v ~ \omega \varsigma ~ \mu о v \alpha \delta ı к o ́ ~ к \alpha ı ~ к и р i ́ \alpha \rho \chi о ~ \sigma \tau o ́ \chi о ~ \tau \eta \nu ~$

 аvтóv тоv тро́ло $\theta \alpha \pi \rho о \omega \theta \eta \theta \varepsilon i ́ ~ \eta ~ \mu \alpha \theta \eta \tau о к \varepsilon ข \tau \rho ı к \eta ́ ~ \delta ı \alpha \delta ı к \alpha \sigma i ́ \alpha, ~ \alpha v \tau \eta ́ ~ \eta ~ \delta ı \alpha \delta ı к \alpha \sigma i ́ \alpha ~$
 ঠпиюорүүки́ торві́а.

'О $\pi \omega \varsigma$ аv $\alpha \varphi \varepsilon ́ \rho \alpha \mu \varepsilon \kappa \alpha ı ~ \pi \alpha \rho \alpha \pi \alpha ́ v \omega, ~ \eta ~ \varepsilon \kappa \pi \alpha i ́ \delta \varepsilon v \sigma \eta ~ \varepsilon i ́ v \alpha ı ~ \varepsilon ́ v \alpha ~ \mu \varepsilon ́ \sigma o ~ \sigma v ́ \mu \varphi \omega v \alpha ~ \mu \varepsilon ~ \tau о ~$ олоі́о $\mu \pi о \rho \varepsilon і ́ ~ \tau о ~ \alpha ́ \tau о \mu о ~ v \alpha ~ к \alpha \lambda \lambda ı \varepsilon \rho \gamma \eta ́ \sigma \varepsilon є ~ \sigma \varepsilon ~ \mu \varepsilon \gamma \alpha ́ \lambda о ~ \beta \alpha \theta \mu o ́ ~ \tau \eta ~ \delta \eta \mu ı о \rho \gamma ı к о ́ \tau \eta \tau \alpha ́ ~ \tau о v . ~$

1. Avàvтıкó $\pi \rho o ́ \gamma \rho \alpha \mu \mu \alpha$

'О $\omega \omega \varsigma ~ \alpha \nu \alpha \varphi \varepsilon ́ \rho \alpha \mu \varepsilon ~ \kappa \alpha ı ~ \sigma \tau \eta \nu ~ \pi \alpha \rho \alpha \pi \alpha ́ v \omega ~ \pi \alpha \rho \alpha ́ \gamma \rho \alpha \varphi о, ~ о ~ \beta \alpha \sigma ı к о ́ \varsigma ~ \sigma \tau о ́ \chi о \varsigma ~ \tau \eta \varsigma ~$

 103-106).

 $\sigma \kappa \varepsilon ́ \psi \eta ~ к \alpha ı ~ v \alpha \alpha \pi о \beta \alpha ́ \lambda \varepsilon ı ~ \tau \eta v ~ \alpha \delta \rho \alpha ́ v \varepsilon ı \alpha . ~ \Theta \alpha ~ \pi \rho \varepsilon ́ \pi \varepsilon ı ~ v \alpha ~ \alpha \pi о \varphi \varepsilon ט ́ \gamma \varepsilon \tau \alpha ı ~ \eta ~ \sigma ט \sigma \sigma \omega ́ \rho \varepsilon v \sigma \eta ~$

 $\delta \iota \delta \alpha \sigma \kappa \alpha \lambda i ́ \alpha \varsigma ~ \eta ~ \alpha \pi о \sigma \tau \eta ́ \theta \iota \sigma \eta ~ \kappa \alpha ı \eta ~ \pi \alpha \pi \alpha \gamma \alpha \lambda i \alpha \alpha(K \alpha \tau \sigma \alpha \mu \pi \alpha ́ v \eta \varsigma, ~ 2013: 105)$.

Т $\alpha \alpha v \alpha \lambda \nu \tau \iota \kappa \alpha ́ ~ \pi \rho о \gamma \rho \alpha ́ \mu \mu \alpha \tau \alpha ~ \pi \varepsilon \rho ı \lambda \alpha \mu ß \alpha ́ v o v v ~ к о р i ́ \omega \varsigma: ~$
 $\tau \eta \varsigma ~ \varepsilon \kappa \pi \alpha i ́ \delta \varepsilon v \sigma \eta \varsigma$.

 $\pi \rho o ́ \gamma \rho \alpha \mu \mu \alpha \kappa \alpha ı \pi \rho о \sigma \alpha \rho \mu о \sigma \mu \varepsilon ́ v \eta$ бтı̧ $\delta v \nu \alpha \tau о ́ \tau \eta \tau \varepsilon \varsigma ~ \tau \omega v ~ \varepsilon \kappa \pi \alpha ı \delta \varepsilon v o \mu \varepsilon ́ v \omega v . ~$
 $\mu \varepsilon ́ \sigma \alpha$ ठ $\delta \delta \alpha \sigma \kappa \alpha \lambda i ́ \alpha \varsigma ~ \kappa \alpha ́ \theta \varepsilon \varepsilon \varepsilon \vee o ́ \tau \eta \tau \alpha \varsigma ~ \eta ́ ~ \theta \varepsilon ́ \mu \alpha \tau о \varsigma . ~$

2. O єкла兀ঠєvт兀ко́я

T α г $\ell \lambda \varepsilon v \tau \alpha i ́ \alpha ~ \chi \rho o ́ v ı \alpha ~ \varepsilon \pi ı \delta ı ́ \kappa \varepsilon \tau \alpha ı ~ \mu \varepsilon ~ \kappa \alpha ́ \theta \varepsilon ~ \delta v v \alpha \tau o ́ ~ \tau \rho o ́ \pi о, ~ v \alpha ~ \varepsilon v \sigma \omega \mu \alpha \tau \omega \theta \varepsilon i ́ ~ \eta ~$

 $\varepsilon \kappa \pi \alpha \iota \delta \varepsilon \cup \tau \iota \kappa$ ќs ${ }^{12}$.

[^7]

 $v \alpha \pi \rho о к и ́ \psi о v \vee ~ \alpha \pi o ́ ~ \tau \eta ~ \delta \iota \delta \alpha \sigma \kappa \alpha \lambda i ́ \alpha . ~ A v ~ \mu \varepsilon ́ \sigma \alpha ~ \alpha \pi o ́ ~ \tau \eta ~ \sigma \tau \alpha ́ \sigma \eta ~ к \alpha \tau \alpha \varphi \varepsilon ́ \rho \varepsilon ı ~ v \alpha ~ \delta \eta \mu ю v \rho \gamma \eta ́ \sigma \varepsilon ı ~$

 то $\alpha i ́ \sigma \theta \eta \mu \alpha ~ \tau \eta \varsigma ~ \delta \eta \mu ю о \rho \gamma i ́ \alpha \varsigma, ~ \tau \eta \varsigma ~ \delta \eta \mu ю о р \gamma ю к \eta ́ \varsigma ~ \sigma к \varepsilon ́ \psi \eta \varsigma . ~$

Oı $\beta \alpha \sigma ı к о ́ t \varepsilon \rho \varepsilon \varsigma ~ \mu \varepsilon \theta o ́ \delta o v s ~ \delta ı \delta \alpha \sigma к \alpha \lambda i ́ \alpha \varsigma ~ \pi о v ~ \theta \alpha ~ \pi \rho \varepsilon ́ \pi \varepsilon ı ~ v \alpha ~ \alpha к о \lambda о v \theta \eta ́ \sigma \varepsilon ı ~ о ~$
 $\varepsilon \xi \check{\prime} \zeta:$

[^8]- \quad Н $\mu \varepsilon ́ \theta o \delta o \varsigma ~ \tau o v ~ к а \tau \iota \delta \varepsilon \alpha \sigma \mu о v ́ ~(b r a i n s t o r m i n g): ~ П \rho о ́ к \varepsilon ı \tau \alpha ı ~ \gamma ı \alpha ~ \mu ı \alpha ~$
 $\delta \iota \tau \tau \alpha \kappa \tau \ldots$ ки́s $\sigma \pi о \cup \delta \alpha \sigma \tau \varepsilon ́ \varsigma$.

 тои૬ $\mu \varepsilon \mu \varepsilon \gamma \alpha \lambda$ и́тєрๆ є七кодía.

 $\chi \alpha \rho \alpha ́ \varsigma, ~ \delta ı \alpha \sigma \kappa \varepsilon ́ \delta \alpha \sigma \eta \varsigma ~ \kappa \alpha ı ~ \delta \eta \mu ı о \nu \rho \gamma i ́ \alpha \varsigma, ~ v ı 0 \varepsilon \varepsilon \tau о v ́ \mu \varepsilon ~ \tau \eta \nu ~ \chi \rho \eta ́ \sigma \eta ~ \delta ı \alpha \varphi o ́ \rho \omega v ~ \pi \alpha ı \chi v ı \delta ı \dot{v}$ каı

- $\quad \mathrm{H} \mu \varepsilon ́ \theta o \delta o \varsigma ~ \tau \eta \varsigma ~ \pi \lambda \alpha ́ \gamma เ \alpha \varsigma ~ \sigma \kappa \varepsilon ́ \psi \eta \varsigma . ~$
- $\mathrm{H} \mu \varepsilon ́ \theta o \delta o \varsigma ~ \tau \omega v ~ \pi \rho о к р о v ́ \sigma \tau \varepsilon \iota \omega v ~ \sigma v v \delta v \alpha \sigma \mu ต ́ v . ~$

- H тєдvıкฑ́ 535 бט́ $\mu \varphi \omega v \alpha \mu \varepsilon \tau \eta \nu$ олоí $\alpha \chi \eta \mu \alpha \tau i \zeta$ оvт $\alpha ı$ $5 \mu \varepsilon \lambda \varepsilon i ́ \varsigma ~ о \mu \alpha ́ \delta \varepsilon \varsigma ~$

[^9] 1 δ é $\varsigma \varsigma \tau 0$.

- Tov $\alpha v \alpha \theta \dot{\varepsilon ́ \tau o v \mu \varepsilon ~ \varepsilon \rho \gamma \alpha \sigma i ́ \varepsilon \varsigma ~ о ı ~ о \pi о і ́ \varepsilon \varsigma ~ \varepsilon v \theta \alpha \rho \rho и ́ v o v v ~ \tau \eta \nu ~ \alpha v \tau \varepsilon v \varepsilon ́ \rho \gamma \varepsilon ı \alpha, ~ \tau \eta \nu ~}$ $\varepsilon \rho \varepsilon ง v \eta \tau ו \kappa \eta ́ ~ \delta ı \alpha ́ \theta \varepsilon \sigma \eta, \tau \eta \nu \pi \rho \omega \tau о \tau v \pi i ́ \alpha, \tau \eta ~ \lambda \eta ์ \psi \eta ~ \alpha \pi о \varphi \alpha ́ \sigma \varepsilon \omega v, \chi \omega \rho i ́ s ~ \tau о v ~ \varphi o ́ ß о ~ \tau \eta \varsigma$ $\beta \alpha \theta \mu$ одó $\gamma \eta \sigma \eta \varsigma \eta$ ๆ́ $\tau \eta \varsigma \alpha \pi \circ \tau \tau \chi i ́ \alpha \varsigma$.
- $\quad \Delta \varepsilon v \pi \rho \varepsilon ́ \pi \varepsilon \imath ~ v \alpha ~ \alpha \sigma к о и ́ \mu \varepsilon ~ к \rho ı \tau ı к \eta ́ ~ \sigma \tau \eta ~ \sigma о \mu \pi \varepsilon \rho ю р о р \alpha ́ ~ \tau о v, ~ \chi \omega \rho i ́ s ~ v \alpha ~$

 $\delta \iota \delta \alpha ́ \sigma к о \cup \mu \varepsilon$ va то єкт兀иŋ́бєı каı о ídıo̧.

- $\quad \Delta \varepsilon v \pi \rho \varepsilon ́ \pi \varepsilon \imath ~ v \alpha \pi \varepsilon \rho ı \rho ı \zeta ̌ o ́ \mu \alpha \sigma \tau \varepsilon \mu o ́ v o ~ \sigma \varepsilon ~ \tau ı ~ \gamma v \omega \rho i ́ \zeta \varepsilon ı ~ \tau о ~ \pi \alpha ı \delta i ́ ~(\gamma \nu \omega \sigma \tau ı к \eta ́ ~$
 $\pi \lambda \varepsilon \cup \rho \alpha ́)$.

 дарактๆрюбткка́ тоv.

 $\gamma \varepsilon \lambda \alpha \sigma \tau o ́ \varsigma$.

 тро́то бкє́чๆऽ тоv.

 $\varepsilon \pi ィ \beta \rho \alpha \beta \varepsilon$ v́єı то $\lambda \alpha \dot{\theta} \theta$ os
 бкદ́ η к αl ঠ $\rho \alpha ́ \sigma \eta ~$

- $\quad \Delta i ́ v \varepsilon ı ~ \chi \rho o ́ v o ~ \sigma \tau о \nu ~ \mu \alpha \theta \eta \tau \eta ́ ~ v \alpha ~ \varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma \tau \varepsilon i ́ ~ \tau ı \varsigma ~ v \varepsilon ́ \varepsilon \varsigma ~ \pi \lambda \eta \rho о \varphi о \rho i ́ \varepsilon \varsigma ~ \pi о v ~$ $\delta \varepsilon ́ \chi \varepsilon \tau \alpha \downarrow \kappa \alpha 1 ~ \delta \varepsilon v ~ \tau о ~ \pi \imath \varepsilon ́ \zeta \varepsilon เ$.

 $\alpha \nu \tau \eta v \varepsilon \kappa \tau \tau \mu \eta ́ \sigma \varepsilon 1, \theta \alpha \mu \pi 0 \rho \varepsilon ́ \sigma \varepsilon 1 v \alpha \tau \eta \delta_{1 \delta \alpha ́ \xi \varepsilon \varepsilon .}$

 $\delta \eta \mu ю$ рүүко́тๆта.

3. T $\alpha \tau \varepsilon \chi v 0 \lambda 0 \gamma \iota \kappa \alpha ́ \mu \varepsilon ́ \sigma \alpha$ (TПE)

 $\mu \alpha ́ \theta \eta \sigma \eta \varsigma$. Eívaı $\alpha v \alpha \gamma \kappa \alpha i ́ o ~ v \alpha ~ \gamma v \omega \rho i ́ \zeta ̧ о \nu \mu \varepsilon, \pi \omega \varsigma ~ \tau \alpha ~ \sigma v ́ \gamma \chi \rho о v \alpha ~ \varepsilon к \pi \alpha ı \delta \varepsilon v \tau ı \kappa \alpha ́ \alpha ~ \mu \varepsilon ́ \sigma \alpha, ~$

 $\alpha v \alpha ́ \lambda o \gamma \eta ~ \sigma u \chi v o ́ \tau \eta \tau \alpha{ }^{15}$.

- $v \alpha \alpha \pi о \kappa \tau о v ́ v ~ \pi \rho o ́ \sigma \beta \alpha \sigma \eta ~ \sigma \varepsilon ~ v \varepsilon ́ \varepsilon \varsigma ~ \pi \eta \gamma \varepsilon ́ \varepsilon \varsigma ~ \gamma \nu ต ́ \sigma \eta \varsigma, ~$
- $v \alpha \alpha v \alpha \pi \tau v ́ \sigma \sigma o v v \tau \eta ~ \sigma v v \varepsilon \rho \gamma \alpha \sigma i ́ \alpha ~ \mu \varepsilon \alpha ́ \lambda \lambda \lambda o v \varsigma ~ \mu \alpha \theta \eta \tau \varepsilon ́ \varsigma$.

[^10]

 $\sigma \cup v \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \mu \varepsilon$ тоvऽ $\sigma \cup \mu \varphi о \tau \tau \eta \tau \varepsilon ́ \varsigma ~ \tau о v$.

 то μ óvo $\alpha \pi о \tau \varepsilon ́ \lambda \varepsilon \sigma \mu \alpha ~ \pi о v ~ \theta \alpha ~ \pi \varepsilon \tau ט ́ \chi \varepsilon ı ~ \varepsilon i ́ v \alpha ı ~ v \alpha ~ к \alpha \lambda \lambda ı \varepsilon \rho \gamma \eta \theta \varepsilon i ́ ~ \kappa \alpha \tau ’ ~ \alpha v \tau o ́ v ~ \tau о \nu ~ \tau \rho o ́ \pi о ~ \eta ~$
 тро́лоия $\gamma 1 \alpha$ v α vдолоџ́бєє $\tau \eta v \varepsilon \rho \gamma \alpha \sigma i ́ \alpha ~ \tau о v^{17}$.

[^11]
KEФAАAIO 3° : $\triangle H M I O Y P Г I K O T H T A ~ \Sigma T H N ~$
 EKПAIDEYГH \& IIE@NEİ OPГANILMOI

 $\tau \omega v i \delta \rho \nu \mu \alpha ́ \tau \omega \nu \tau \rho \iota \tau \circ \beta \alpha \dot{\theta} \theta \mu \alpha \varsigma \varepsilon \kappa \pi \alpha i ́ \delta \varepsilon v \sigma \eta \varsigma$ (European University Association, 2007).

 $\mu \varepsilon \lambda \dot{\omega} v \tau \eta \varsigma$ (Walcott, 2002).

Ta т $\varepsilon \lambda \varepsilon v \tau \alpha i ́ \alpha ~ \chi \rho o ́ v i \alpha ~ \pi \alpha \rho \alpha \tau \eta \rho \varepsilon i ́ t \alpha l ~ \varepsilon ́ v \alpha ~ \alpha v \xi \alpha v o ́ \mu \varepsilon v o ~ \varepsilon v \delta ı \alpha \varphi \varepsilon ́ \rho o v ~ \gamma 1 \alpha ~ \tau о ~ \rho o ́ \lambda о ~$

 $\alpha v \alpha ́ \pi \tau \cup \xi ̋ \eta ~(F e r r a r i ~ e t ~ a l ., ~ 2009) . ~ \Sigma v v o ү i ́ ̧ o v \tau \alpha \varsigma, ~ \tau o ~ દ ́ \tau o c ̧ ~ \alpha v \tau o ́ ~ \varepsilon \sigma \tau i ́ \alpha c \varepsilon ~ \sigma \tau \eta ~$

 Evрஸ́лпч.

 $\Sigma ט ́ \mu \varphi \omega v \alpha \mu \varepsilon$ то European Council (2008b), $\mu \varepsilon \rho \iota \kappa \varepsilon ́ \varsigma ~ \alpha \pi o ́ ~ \alpha v \tau \varepsilon ́ \varsigma ~ \tau ı \varsigma ~ \delta \varepsilon \xi ъ o ́ \tau \eta \tau \varepsilon \varsigma ~ \varepsilon i ́ v \alpha ı ~ o 七 ~$

 $\pi \rho \omega \tau о \beta о \cup \lambda i ́ \alpha \varsigma ~ к \alpha ı ~ \tau \eta \varsigma ~ \varepsilon \pi \imath \chi \varepsilon ı \rho \eta \mu \alpha \tau \iota к о ́ \tau \eta \tau \alpha \varsigma ~ к \alpha ı$ $\pi о \lambda \iota \tau \iota \sigma \mu \kappa \eta ́ \sigma v v \varepsilon i ́ \delta \eta \sigma \eta$ каl દ́кррабף.

 $\delta \varepsilon \xi$ ıóт $\eta \tau \varepsilon \varsigma \pi$ тоv $\pi \rho \circ \omega \theta$ oúv $\tau \eta \nu$ каıvoтo $\mu i ́ \alpha$ (Hoidn \& Kärkkäinen, 2014). Н $\sigma \tau \rho о \varphi \mathfrak{\eta} \quad \alpha v \tau ŋ$

$\sigma ט ́ \mu \varphi \omega v \alpha \mu \varepsilon$ тov OECD (2008), oı $\pi \alpha \rho \alpha \pi \alpha ́ v \omega ~ \kappa \kappa \alpha v o ́ \tau \eta \tau \varepsilon \varsigma ~ \varepsilon i ́ v \alpha ı ~ \sigma \eta \mu \alpha \nu \tau \iota \kappa \varepsilon ́ \varsigma ~ o ́ \chi ı ~ \mu o ́ v o ~$

人ıóv α.
'О $\omega \omega \varsigma ~ \alpha v \alpha \varphi \varepsilon ́ \rho Ө \eta \kappa \varepsilon ~ \pi \alpha \rho \alpha \pi \alpha ́ v \omega, ~ \eta ~ \varepsilon \kappa \pi \alpha i ́ \delta \varepsilon v \sigma \eta ~ \theta \alpha ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \varepsilon 1 ~ \tau о ~ o ́ \chi \eta \mu \alpha ~ \gamma 1 \alpha ~ \tau \eta \nu$

 Comenius к $\alpha ı$ Erasmus. T α л $\rho о \gamma \rho \alpha ́ \mu \mu \alpha \tau \alpha \alpha v \tau \alpha ́ ~ \theta \alpha ~ \pi \alpha \rho о v \sigma ı \alpha \sigma \tau o v ́ v ~ \sigma \tau \eta ~ \sigma v v \varepsilon ́ \chi \varepsilon ı \alpha . ~$

3.1. Проүра́лиата Erasmus

Та $\tau \varepsilon \lambda \varepsilon v \tau \alpha i ́ \alpha ~ \chi \rho o ́ v i \alpha ~ \eta ~ E v \rho \omega \pi \alpha і ̈ к и ̆ ~ ’ Е v \omega \sigma \eta ~ \pi \rho о \omega \theta \varepsilon i ́ ~ \pi \rho о \gamma \rho \alpha ́ \mu \mu \alpha \tau \alpha ~ \gamma ı \alpha ~ \tau \eta \nu$
 $\alpha v \alpha \pi \tau v ́ \sigma \sigma o v \tau \alpha ı ~ \delta \rho \alpha ́ \sigma \varepsilon ı \varsigma ~ o ́ \pi \omega \varsigma ~ E r a s m u s+~ Y o u t h: ~ T r a i n i n g ~ c o u r s e s, ~ Y o u t h ~ e x c h a n g e: ~$ EVS (European Voluntary Service), Seminars: PBA (Partnership Building Activity).
 B $\alpha \sigma$ кќs $\sigma \tau о ́ \chi о \varsigma ~ \alpha v \tau \dot{\nu} \tau \omega v \pi \rho о \gamma \rho \alpha \mu \mu \alpha ́ \tau \omega \nu$

 $\pi v \varepsilon v ́ \mu \alpha \tau \circ \varsigma \quad \sigma \varepsilon$ ó $\lambda \alpha$ $\tau \alpha$ $\varepsilon \pi i ́ \pi \varepsilon \delta \alpha \quad \tau \eta \varsigma$ $\varepsilon \kappa \pi \alpha i ́ \delta \varepsilon v \sigma \eta \varsigma \kappa \alpha ı \tau \eta \zeta \kappa \alpha \tau \alpha ́ \rho \tau \iota \sigma \eta \varsigma^{18}$.

T α т $о$ оүро́ $\mu \mu \alpha \tau \alpha$ Erasmus عívaı

 $\alpha \dot{\alpha} \lambda \lambda \eta$ عирюлаїки́ $\chi \omega ́ \rho \alpha$ $\alpha \lambda \lambda \alpha ́ \kappa \alpha ı ~ \gamma ı \alpha ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha ~$ $\tau \omega \nu \kappa \alpha \theta \eta \gamma \eta \tau \omega ́ v$ каı $\tau о v \pi \rho о \sigma \omega \pi \iota \kappa о v ́ ~ \tau \omega \nu$ $\pi \alpha v \varepsilon \pi \iota \tau \tau \eta \mu i ́ \omega v$ бто $\varepsilon \xi \omega \tau \varepsilon \rho ı к$. Tо

[^12]
 $\varepsilon \pi \omega \varphi \varepsilon \lambda \eta \theta$ ov́v o ε ह́va̧ $\alpha \pi$ о́ тоv $\alpha \lambda \lambda$.

T $\alpha \pi \rho о \gamma \rho \alpha ́ \mu \mu \alpha \tau \alpha$ Erasmus $\alpha v \alpha \delta \varepsilon ו \kappa v v ́ o v v ~ \tau \eta ~ \beta \omega \mu \alpha \tau \iota \kappa \eta ́ ~ \mu \alpha ́ \theta \eta \sigma \eta ~ \mu \varepsilon 《 \tau \eta \nu$
 $\tau \eta ~ \delta \iota \alpha ́ \pi \lambda \alpha \sigma \eta ~ \pi \rho о \sigma \omega \pi \imath \kappa о \tau \eta ́ \tau \omega v ~ \mu \varepsilon ́ \sigma \alpha ~ \alpha \pi o ́ ~ \tau \alpha ~ \beta ı \dot{\mu} \mu \alpha \tau \alpha ~ \kappa \alpha l ~ \tau \iota \varsigma ~ \alpha \lambda \lambda \eta \lambda \varepsilon \pi \iota \delta \rho \alpha ́ \sigma \sigma \iota \varsigma ~ о \mu \alpha ́ \delta \omega v$

 $\pi \varepsilon \rho \alpha ı \tau \varepsilon ́ \rho \omega ~ к \alpha ı v о \tau о \mu i ́ \alpha ~ \sigma \tau о ~ \chi ஸ ́ \rho о ~ \tau \eta \varsigma ~ \tau \rho ı т о \beta \alpha ́ \theta \mu ı \alpha \varsigma ~ \varepsilon к \pi \alpha i ́ \delta \varepsilon v \sigma \eta \varsigma . ~$

3.2. Про́ $ү \rho \alpha \mu \mu \alpha$ Comenius

 $\alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \mu \varepsilon ́ \rho o s ~ \tau о v ~ П р о \gamma \rho \alpha ́ \mu \mu \alpha \tau о \varsigma ~ \Delta l \alpha ~ B i ́ o v ~$
 ó λ ovs tovs $\varepsilon \mu \pi \lambda \varepsilon \kappa о \mu \varepsilon ́ v o v s ~ \sigma \tau \eta \nu ~ \varepsilon \kappa \pi \alpha i ́ \delta \varepsilon v \sigma \eta, ~$

[^13]

То $\pi \rho о ́ \gamma \rho \alpha \mu \mu \alpha ~ C o m e n i u s ~ \sigma \tau о \chi \varepsilon v ́ \varepsilon ı ~ \sigma \tau \eta ~ ß \varepsilon \lambda \tau i ́ \omega \sigma \eta ~ \kappa \alpha ı ~ \tau \eta \nu ~ \alpha v ́ \xi ŋ ๆ \sigma \eta ~ \tau \eta s ~$

Kи́pıа $\alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha ~ \tau о v ~ C o m e n i u s ~ \varepsilon i ́ v \alpha ı ~ \eta ~ \delta \eta \mu ı v р \gamma i ́ \alpha ~ v \varepsilon ́ \omega v ~ \pi \rho о \gamma \rho \alpha \mu \mu \alpha ́ \tau \omega v ~$

 Eupó $\pi \eta^{22}$.

Oı $\sigma \nu \mu \mu \varepsilon \tau \varepsilon ́ \chi o v \tau \varepsilon \varsigma ~ \mu \varepsilon ́ \sigma \alpha ~ \alpha \pi o ́ ~ \tau о ~ \pi \rho o ́ \gamma \rho \alpha \mu \mu \alpha ~ C o m e n i u s ~ \alpha v \alpha \gamma v \omega \rho i ́ \zeta o v v ~ \pi \lambda \varepsilon ́ o v ~$

3.3 Про́ $\gamma \rho \alpha \mu \mu$ AHELO

 $\kappa \alpha 1 \quad \chi \alpha \rho \alpha \kappa \tau ท ́ \rho \alpha \varsigma ~ \tau о v, ~ \kappa \alpha \theta \omega ́ \varsigma ~ \tau \alpha ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \alpha ~ \sigma \cup \lambda \lambda \varepsilon ́ \gamma о v \tau \alpha ı ~ \alpha \pi o ́ ~ \tau \varepsilon \sigma \tau ~ \pi о v ~$
 $\delta \iota \delta \alpha \sigma \kappa \alpha \lambda i ́ \alpha \varsigma$ ó oо каı $\tau \eta \varsigma \mu \alpha ́ \theta \eta \sigma \eta \varsigma . ~ \Sigma \varepsilon \alpha v \tau i ́ \theta \varepsilon \sigma \eta ~ \mu \varepsilon \alpha ́ \alpha \lambda \lambda \varepsilon \varsigma ~ \tau \alpha \xi ı v o \mu \eta ́ \sigma \varepsilon \iota \varsigma, ~ \tau о ~ \pi \rho о ́ \gamma \rho \alpha \mu \mu \alpha$

[^14]

 Еиюஸ́тŋ $\sigma \tau \alpha \pi \lambda \alpha i ́ \sigma 1 \alpha ~ \tau \eta \varsigma ~ \pi \alpha \gamma к о \sigma \mu ı \pi о$ о́ $\sigma \eta \varsigma$.

ェҮMПEPAГMATA

 $\alpha \quad \alpha \theta \rho \omega \pi о \quad \kappa \alpha \imath \quad$ като́ π о́бо η
 аvто́v. Пı боүкєкрцє́vа, $\sigma ט ́ \mu \varphi \omega v \alpha \quad \mu \varepsilon$ $\tau \eta \nu \quad \pi \alpha \iota \delta \alpha \gamma \omega \gamma ו \kappa \eta ́$

 $\gamma \nu \omega ́ \sigma \varepsilon 1 \varsigma ~ \tau о v \quad \alpha \tau о ́ \mu о v, \quad \eta$ $\pi \rho о \sigma \omega \pi \iota к о ́ \tau \eta \tau \alpha$ каı $\tau \alpha$ кі́vŋтро́

 $\varepsilon к \pi \alpha i ́ \delta \varepsilon v \sigma \eta \varsigma . ~ Т о ~ \gamma \varepsilon \gamma о v o ́ s ~ \alpha v \tau o ́ ~ к \alpha \tau \alpha ́ ~ к \alpha ́ \pi о ю ~ \tau р о ́ \pi о ~ о \varphi \varepsilon i ́ \lambda \varepsilon \tau \alpha l ~ к \alpha l ~ \sigma \tau о \nu ~ \tau р о ́ \pi о ~$

H $\varepsilon \pi \varepsilon ́ v \delta v \sigma \eta ~ \sigma \tau о ~ \varepsilon i ́ \delta o s ~ \alpha u \tau o ́ ~ \tau \eta s ~ \varepsilon к \pi \alpha i ́ \delta \varepsilon v \sigma \eta \varsigma ~ \sigma u v \tau \varepsilon \lambda \varepsilon i ́ ~ \sigma \tau \eta ~ \pi \rho о \alpha \gamma \omega \gamma \eta ́ ~ \tau \eta ~$

 $\alpha \pi o ́ ~ \tau \eta \vee ~ \varepsilon ́ v v o l \alpha ~ \tau \eta \varsigma ~ \sigma v \vee o \chi \eta ́ \varsigma ~ \kappa \alpha l ~ \alpha \pi о \delta \varepsilon ́ \chi \varepsilon \tau \alpha ı ~ \tau \eta \nu ~ \varepsilon \tau \varepsilon \rho o ́ \tau \eta \tau \alpha . ~$

 $\pi о \lambda i ́ \tau \varepsilon \varsigma$.

 $\sigma \tau \eta ~ \alpha \nu ต ́ \tau \alpha \tau \eta ~ \varepsilon к \pi \alpha i ́ \delta \varepsilon v \sigma \eta, \eta$ отоía $\alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \kappa \alpha ı ~ \alpha \nu \tau ו \kappa \varepsilon i ́ \mu \varepsilon v o ~ \mu \varepsilon \lambda \varepsilon ́ \tau \eta \varsigma ~ \tau \eta \varsigma ~ \pi \alpha \rho о v ́ \sigma \alpha \varsigma ~$

 $\varepsilon \pi \imath \tau \varepsilon \cup \chi \theta \varepsilon i ́$ о $\sigma \tau o ́ \chi \circ \varsigma ~ \alpha v \tau o ́ s ~ \kappa \alpha ı ~ v \alpha ~ \varepsilon \pi \varepsilon ́ \lambda \theta o v v ~ \tau \alpha ~ \varepsilon \pi \imath \theta v \mu \eta \tau \alpha ́ ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha ~ \varepsilon i ́ v \alpha ı ~$

BIBАIOГРАФIA

 По́тра.

- Davies, T. (2006). Creative teaching and learning in Europe: Promoting a new paradigm. The curriculum journal, 17(1), 37-57.
- EC. (2008a). Decision no 1350/2008/ec of the european parliament and of the council of 16 December 2008 concerning the European Year of Creativity and Innovation,http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008: 348:0115:0117:EN:PDF
- EC. (2008b). Explanatory Memorandum. proposal presented by the European Commission for the European Year of the Creativity and Innovation 2009. Fromhttp://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2008:0159 :FIN:EN:PDF
- Ferrari, A., Cachia, R., \& Punie, Y. (2009). Innovation and creativity in education and training in the EU member states: Fostering creative learning and supporting innovative teaching. JRC Technical Note, 52374.

- Hoidn, S., \& Kärkkäinen, K. (2014). Promoting skills for innovation in higher education: A literature review on the effectiveness of problem-based learning and of teaching behaviours. OECD Education Working Papers, (100), $0 _1$.

 бо́үхроvo бходвío.
- Walcott, S., (2002). Analyzing an innovative environment: San Diego as a bioscience beachhead. Economic Development Quarterly, 16(2), 99-114.

ILTOLEAIAEE

 http://benl.primedu.uoa.grdatabase1gnwstiki_vasi_dimiourgiki.pdf.

 Аขактŋ́өŋкє $\alpha \pi$: http://benl.primedu.uoa.gr/conference/diathematiki_epidrasi_dimiourgiki.pdf.

 Avaктท́Ө $\uparrow \kappa \varepsilon \alpha \pi$ о́: http://repository.edulll.gr/edull1/retrieve/3352/1008.pdf.
 http://gnomikologikon.gr/catquotes.php?categ=2775.

- Oıкоо́ μ оv, B. H т $\varepsilon \chi v o \lambda o \gamma i ́ \alpha ~ \sigma \tau \eta v ~ \varepsilon к \pi \alpha i ́ \delta \varepsilon v \sigma \eta . ~ A \pi o ́ ~ \tau \eta ~ к \alpha \tau \eta \gamma о р i ́ \alpha: ~$ $\triangle \eta \mu \imath o v \rho \gamma \iota \kappa o ́ t \eta \tau \alpha$. (бє入. 3). Avактŋ́ $\theta \eta \kappa \varepsilon \alpha \pi o ́: ~ h t t p: / / e c o n o m u w o r d p r e s s . c o m . ~$
- http://www.lib.teicrete.gr/webnotes/sdo/Epixeirimatikotita/notes2.pdf
 http://gerasimos-politis.blogspot.gr/2012/06/nohsh-egkefalos-systhmataantilhpshs.htm

 schools.gr/special_education_new/ftp/aps_depps/harismatika.pdf.
 д́ $\lambda \lambda \varepsilon \varsigma ~ \delta l \alpha \tau \alpha ́ \xi ̌ \varepsilon ı \varsigma . ~ N O M O \Sigma ~ Y П ’ ~ A P I \Theta . ~ 1566, ~ 30 ~ \Sigma Е П T E M B P I O Y ~ 1985, ~$ Aөŋ́va. Avaктŋ́өๆкє $\quad \alpha \pi o ́: \quad$ http://www.pischools.gr/preschool_education/nomothesia/1566_85.pdf.

 http://www.pi-schools.gr/paideia_dialogos/analitika-programmata.pdf
- http://el.swewe.net/word_show.htm?1291914_1\&Guilford.
- http://www.paidorama.com/paidia-kai-dimiourgikotita.html
- http://www.authorstream.com/Presentation/katsoulis-1694637/. Avaктŋ́ $\theta \eta \kappa \varepsilon$ 2014.
- https://ec.europa.eu/programmes/erasmus-plus/node_el
- http://europa.eu/rapid/press-release_IP-09-714_en.htm
- www.naftemporiki.gr
- www.openmind.net.gr
- www.parentshelp.gr

[^0]: ${ }^{1}$ Avaктŋ́ $\theta \eta \kappa \varepsilon \alpha \pi$ ẃ www.economu.wordpress.com

[^1]: ${ }^{2}$ Avaк兀ŋ́ $\theta \eta \kappa \varepsilon \alpha \pi$ www.gnomikologikon.gr

[^2]: ${ }^{3}$ Avaктท́ $\theta \eta \kappa \varepsilon \alpha \pi$ ó：http：／／el．swewe．net／word show．htm／？ 1291914 1\＆Guilford

[^3]: ${ }^{4}$ Avaк兀ŋ́ $\theta \eta \kappa \varepsilon \alpha \pi o ́$ www．naftemporiki．gr
 ${ }^{5}$ Avaктท́讯кє $\alpha \pi$ ó www．economu．wordpress．com

[^4]: ${ }^{6}$ Avaк兀ŋ́ $\theta \eta \kappa \varepsilon \alpha \pi$ о́ http://gerasimos-politis.blogspot.gr/2012/06/nohsh-egkefalos-systhmataantilhpshs.html, 2012.

[^5]: ${ }^{8}$ Avaк兀ŋ́ $\theta \eta \kappa \varepsilon \alpha \pi o ́$ www.paidorama.com

[^6]: ${ }^{9}$ Avaкт $\eta^{\theta} \eta \uparrow \varepsilon \propto \alpha \sigma$ www.parentshelp.gr
 ${ }^{10}$ Avaктฑ́ $\theta \eta \kappa \varepsilon \alpha \pi$ ó www.pi-schools.gr/special education new/ftp/aps depps/harismatika.pdf

[^7]:
 ${ }^{12}$ Av $\alpha \kappa \tau \grave{\eta} \theta \eta \kappa \varepsilon \alpha \pi$ о́ http://economu.wordpress.com

[^8]: ${ }^{13}$ Avaктŋ́ $\theta \eta \kappa \varepsilon \alpha \pi$ о́ www.openmind.net.gr

[^9]: ${ }^{14}$ Av $\alpha \kappa \tau \grave{\eta} \theta \eta \kappa \varepsilon \alpha \pi$ ó http://economu.wordpress.com

[^10]: ${ }^{15}$ Avaк兀ŋ́ $\theta \eta \kappa \varepsilon \alpha \pi \delta ́$ www.pi-schools.gr
 ${ }^{16}$ Avaктŋ́ $\theta \eta \kappa \varepsilon \alpha \pi$ ó www.economu.wordpress.com

[^11]:

[^12]: ${ }^{18} \mathrm{Av} \alpha \kappa \tau \eta \dot{\theta} \eta \kappa \varepsilon \alpha \pi$ 亿́ https://ec.europa.eu/programmes/erasmus-plus/node el

[^13]:
 ${ }^{20}$ Avaктŋ́ $\theta \eta \kappa \varepsilon \alpha \pi$ ó https://ec.europa.eu/programmes/erasmus-plus/node el

[^14]:
 ${ }^{22}$ Av $\alpha \kappa \tau \eta \dot{\eta} \dagger \kappa \varepsilon \alpha \pi$ ó http://europa.eu/rapid/press-release IP-09-714 en.htm

