
Technological Educational Institute of Western Greece

Computer & Informatics Engineering Department

Design & Development of a message passing

communication framework for heterogeneous

Wireless Sensor Networks

Author: Antonopoulos Konstantinos

Supervisors:

Assistant Professor Voros Nikolaos

Department of Computer & Informatics Engineering

Technological Educational Institute of Western Greece

Research & Teaching Assistant Antonopoulos Christos

Department of Computer & Informatics Engineering

Technological Educational Institute of Western Greece

Master Thesis in Computer Science Engineering

February 2016

2

Abstract
Cyber Physical Systems (CPS) represent a relatively new research domain aiming to

unite the physical and the ICT worlds. Therefore, it is anticipated to have a huge

impact in a wide range of real life application scenarios. Incorporating different

engineering domains such as Wireless Sensor Networks and Embedded systems,

CPSs are characterized from high degree of heterogeneity regarding various aspects,

such as communication, hardware and software solutions. Additionally, in order to be

well accepted from end users an end-to-end, it is of paramount importance to exhibit

high degree of configurability and flexibility so as to applicable in a diverse

application scenarios. Aiming to address such objectives this work proposes a holistic

end-to-end CPS communication infrastructure based on message passing

communication technologies. Presented scheme offers homogeneous support to a

wide range of WSN communication technologies while the system wide architecture

is able to adjust to any application or platform peculiarities. Additionally, the whole

architecture is implemented based on commercial off-the-shelf equipment thus

demonstrating the infrastructure's degree of feasibility. Finally, end to end

performance evaluation is performed highlighting, on one hand, applicability of the

system to a wide range of real applications and, on the other hand, resource

conservative behavior advocating integration to nowadays embedded systems.

Keywords: Cyber Physical System, Internet of Things, Wireless Sensor Networks,

Message Passing Protocols, Communications, Infrastructure Design implementation,

Performance Evaluation.

3

Contents

1. Introduction ... 7

1.1 Cyber physical Systems ... 7

1.1.1 What is Cyber Physical Systems (CPS) ... 7

1.1.2 Cyber Physical Systems Layout ... 7

1.1.3 CPS Challenges .. 8

1.2 Message passing protocols .. 10

1.2.1 What is messaging ... 10

1.2.2 Messaging Systems .. 11

1.2.3 Why use Messaging ... 11

1.2.4 Challenges of Asynchronous Messaging .. 13

2. Background Information .. 15

2.1 Wireless communications protocols ... 15

2.1.1 Bluetooth .. 15

2.1.2 802.15.4 ... 17

2.1.3 Zigbee.. 18

2.2 Operating systems ... 20

2.2.1 Linux ... 20

2.2.2 TinyOS .. 20

2.3 Messaging Protocols .. 21

2.3.1 AMQP ... 21

2.3.2 STOMP ... 23

2.3.3 MQTT ... 24

2.3.4 MQTT-SN .. 27

2.4 Network devices ... 28

2.4.1 Sensors / Actuators .. 28

2.4.2 Message Brokers .. 30

2.4.3 Gateways .. 32

3. Network Architecture ... 33

4

3.1 Communication Protocols ... 34

3.2 Gateway .. 34

3.3 Network Coordinator .. 36

3.4 Network Broker ... 36

3.5 Services ... 38

3.5.1 Data storage ... 39

3.5.2 Monitoring / Configuration .. 39

4. Infrastructure Implementation .. 40

4.1 Network Coordinator .. 40

4.2 Network Broker ... 43

4.3 Gateway .. 44

4.3.1 Architecture ... 44

4.3.2 Configurations ... 45

4.3.3 Embedded DB .. 47

4.3.4 IP Communicator .. 48

4.3.5 WSN Communicator ... 49

4.4 Services ... 50

4.4.1 Services Architecture .. 50

4.5.2 Data storage ... 51

4.5.3 Monitoring .. 54

5. Demos ... 55

5.1 System basic functionality initialization .. 55

5.2 Configure system notifications ... 58

6. Performance Evaluation ... 59

6.1 Experimental setup .. 59

6.2 Experimental results ... 60

7. Conclusions .. 63

5

List of Figures
Figure 1. Simplified layout of a CPS ... 7

Figure 2. Bluetooth Piconet & Scatternet Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης.

Figure 3. Bluetooth Stack .. 16

Figure 4. Typical 802.15.4 Topology .. 18

Figure 5. Zigbee Topologies .. 19

Figure 6. Network Architecture Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης.

Figure 7. Gateway types .. 35

Figure 8. Zookeeper structure ... 40

Figure 9. Network Coordinator Structure ... 42

Figure 10. Gateway Architecture ... 44

Figure 11. Message passing protocol connection procedure ... 49

Figure 12. Microservices Architecture ... 50

Figure 13. Database Structure ... 52

Figure 14. Web Panel... 54

Figure 15. System startup procedure .. 55

Figure 16.Typical service startup procedure ... 56

Figure 17. Typical message routing ... 57

Figure 18. Notification process .. 58

Figure 19. Messages Mean Delay .. 60

Figure 20. CPU Usage .. 61

Figure 21. Memory Usage ... 62

6

List of Tables
Table 1. Protocols Features ... 20

Table 2. Gateway Configurations .. 46

Table 3. Gateway document ... 53

Table 4.Temperature rule document .. 53

7

1. Introduction

1.1 Cyber physical Systems

1.1.1 What is Cyber Physical Systems (CPS)

A Cyber Physical System [1] has a tight integration of cyber and physical objects. The

term cyber objects refers to any computing hardware/software resources that can

achieve computation, communication, and control functions in a discrete, logical, or

switched environment. Also, physical objects refers to any natural or human-made

systems that are governed by the laws of physics and operate in continuous time. It is

believed that CPSs will transform how we interact with the physical world, just like

the Internet transformed how we interact with one another. A CPS could be a system

at multiple scales, from big smart bridges with fluctuation detection and responding

functions, to autonomous cars, to tiny implanted medical devices. As a matter of fact,

the ultimate purpose of using cyber infrastructure (including sensing, computing, and

communication hardware/software) is to intelligently monitor (from physical to cyber)

and control (from cyber to physical) our physical world.

1.1.2 Cyber Physical Systems Layout

Figure 1. Simplified layout of a CPS

A CPS is the integration of computer processing with physical input/output.

Embedded computers that are networked together utilize a series of feedback loops to

oversee and control a variety of physical processes. A typical CPS has a basic layout

8

consisting of interconnected sensors and actuators as shown in Figure 1. An actuator

is simply a type of motor that moves or controls another mechanism. The sensors

provide data taken from a physical object, which is, in turn, utilized by the actuator to

perform a function. After data are collected by the sensors, a number of algorithms are

performed and looped over again until a proper command is calculated and sent to the

actuator. It is important to note that time delays must be accounted for when running

computations.

1.1.3 CPS Challenges

Reliability and Uncertainty

Consumers expect CPSs to be reliable and consistent. Indeed, in many applications,

such as medical systems, it is crucial that CPSs perform requested tasks on time and

predictably. Unfortunately, current technologies leave much to be explored in this

aspect. The behavior of electronic components is not perfectly consistent or

predictable.

A disconnection often lies between program execution and physical requirements. A

program has, essentially, 100% reliability in the sense that it will go through the exact

same set of commands in exactly the same order every time it is run. However,

physical systems rely not only on function but also on timing, and computer programs

can be imperfect in this regard. This mismatch causes much uncertainty and

unreliability and becomes a problem for CPSs.

Levels of Abstraction

Embedded systems, which CPSs fundamentally rely on, have different levels of

abstraction. This is helpful in that it allows someone to work on one part of the system

without having to understand or alter the rest of the system. For example, a

programmer can change his or her code without having to worry about the actual

electronic components that will execute the program’s commands because the codes

have been designed with certain abstraction; that is, they are suitable to any machines

as long as the machine understands the code abstraction. However, the way in which

this separation is currently implemented causes several orders of magnitude of timing

precision to be lost. CPSs can be extremely time sensitive, and precise timing is very

important. It is, however, quite encouraging that high precision is available on the

9

most basic level digital circuits. This opens the possibility for more precise CPSs in

the future.

Cyber-Physical Mismatch

Today, many frequently used programming languages do not have commands dealing

with timing and synchronization. In many electronic products today, a delicate

balance is reached between hardware and software, and even a slight change in either

one can throw off this balance, thus causing errors. For example, airlines stock up on

parts when installing a new hardware system because if part of the system is replaced

with a non-identical part, the software will have to be retested and possibly changed.

This is not only economically cumbersome, but it also keeps these consumers from

having up-to-date technology. Thus, they are stuck using the old model until they use

up all their stockpiled parts and can afford to catch up with the technology. So

dividing a system into layers of abstraction, if not managed properly, may actually

impede progress toward successful CPSs.

In a CPS today, the interaction and coordination between the physical elements and

the cyber elements of a system are key aspects. In the physical world, one of the most

dominant characteristics is its dynamics or the state of the system constantly changes

over time. Alternatively, in the cyber world, these dynamics are more appropriately

defined as a series of sequences that do not have temporal semantics. One of the

greatest problems that engineers and researchers are faced with today is the point at

which these two corresponding subsystems intersect one another. There are two basic

approaches to analyzing this problem: cyberizing the physical (CtP), which is where

cyber interfaces and properties are imposed on a physical system; and physicalizing

the cyber (PtC), which is when software and cyber components are represented

dynamically in real time.

Super dense timing

One of the greatest challenges that have been brought to the attention of many

researchers is the notion of a uniform concept of time across all parts of a system

operating simultaneously when correlating the cyber object to the physical object.

There have been many problems in the dynamic systems with control processes that

relate to synchronization, flocking, and formation control. Within the network of

cyber components (such as sensors), a uniform concept of time cannot be realized.

10

Systems that utilize synchronization and time-triggered networks can approximate a

time model, but imperfections must be included to accurately model the dynamics.

The dynamics and natural uncertainties of the physical world are difficult to

accurately model. The concept of time just does not mix well with the cyber world.

Time is continuous in the real world but must become discrete in the cyber world.

1.2 Message passing protocols

1.2.1 What is messaging

Messaging is a technology that enables high-speed, asynchronous, highly reliable

program-to-program communication. Programs communicate by sending packets of

data called messages to each other. Channels, also known as queues, are logical

pathways that connect the programs and convey messages. A channel behaves like a

collection or array of messages, but one that is magically shared across multiple

computers and can be used concurrently by multiple applications. A sender (or

producer) is a program that sends a message by writing the message to a channel. A

receiver (or consumer) is a program that receives a message by reading (and deleting)

it from a channel.

The message itself is simply some sort of data structure—such as a string, a byte

array, a record, or an object. It can be interpreted simply as data, as the description of

a command to be invoked on the receiver, or as the description of an event that

occurred in the sender. A message actually contains two parts, a header and a body.

The header contains meta-information about the message—who sent it, where it’s

going, etc.; this information is used by the messaging system and is mostly (but not

always) ignored by the applications using the messages. The body contains the data

being transmitted and is ignored by the messaging system. In conversation, when an

application developer who is using messaging talks about a message, he’s usually

referring to the data in the body of the message.

Asynchronous messaging architectures are powerful, but require us to rethink our

development approach. As compared to the other three integration approaches,

relatively few developers have had exposure to messaging and message systems. As a

result, application developers in general are not as familiar with the idioms and

peculiarities of this communications platform.

11

1.2.2 Messaging Systems

Messaging capabilities are typically provided by a separate software system called a

messaging system or message-oriented middleware (MOM). A messaging system

manages messaging the way a database system manages data persistence. Just as an

administrator must populate the database with the schema for an application’s data, an

administrator must configure the messaging system with the channels that define the

paths of communication between the applications. The messaging system then

coordinates and manages the sending and receiving of messages. The primary purpose

of a database is to make sure each data record is safely persisted, and likewise the

main task of a messaging system is to move messages from the sender’s computer to

the receiver’s computer in a reliable fashion.

The reason a messaging system is needed to move messages from one computer to

another is that computers and the networks that connect them are inherently

unreliable. Just because one application is ready to send a communication does not

mean that the other application is ready to receive it. Even if both applications are

ready, the network may not be working, or may fail to transmit the data properly. A

messaging system overcomes these limitations by repeatedly trying to transmit the

message until it succeeds. Under ideal circumstances, the message is transmitted

successfully on the first try, but circumstances are often not ideal.

In essence, a message is transmitted in five steps:

1. Create, sender creates the message and populates it with data.

2. Send, sender adds the message to a channel.

3. Deliver, the messaging system moves the message from the sender’s

computer to the receiver’s computer, making it available to the receiver.

4. Receive, receiver reads the message from the channel.

5. Process, receiver extracts the data from the message.

1.2.3 Why use Messaging

Benefits of using messaging:

12

• Remote Communication, Messaging enables separate applications to

communicate and transfer data. Two objects that reside in the same process

can simply share the same data in memory. Sending data to another computer

is a lot more complicated and requires data to be copied from one computer to

another.

• Platform / Language Integration, When connecting multiple computer

systems via remote communication, these systems likely use different

languages, technologies and platforms, perhaps because they were developed

over time by independent teams. Integrating such divergent applications can

require a demilitarized zone (DMZ) of middleware to negotiate between the

applications, often using the lowest common denominator—such as flat data

files with obscure formats. In these circumstances, a messaging system can be

a universal translator between the applications that works with each one’s

language and platform on its own terms, yet allows them to all communicate

through a common messaging paradigm.

• Asynchronous Communication, Messaging enables a send and forget

approach to communication. The sender does not have to wait for the receiver

to receive and process the message; it does not even have to wait for the

messaging system to deliver the message. The sender only needs to wait for

the message to be sent. Once the message is stored, the sender is then free to

perform other work while the message is transmitted in the background. The

receiver may want to send an acknowledgement or result back to the sender,

which requires another message, whose delivery will need to be detected by a

callback mechanism on the sender.

• Variable Timing, with synchronous communication, the caller must wait for

the receiver to finish processing the call before the caller can receive the result

and continue. In this way, the caller can only make calls as fast as the receiver

can perform them. On the other hand, asynchronous communication allows the

sender to batch requests to the receiver at its own pace, and for the receiver to

consume the requests at its own different pace. This allows both applications

to run at maximum throughput and not waste time waiting on each other.

• Throttling, A problem with remote procedure calls is that too many of them

on a single receiver at the same time can overload the receiver. This can cause

13

performance degradation and even cause the receiver to crash. Asynchronous

communication enables the receiver to control the rate at which it consumes

requests, so as not to become overloaded by too many simultaneous requests.

The adverse effect on callers caused by this throttling is minimized because

the communication is asynchronous, so the callers are not blocked waiting on

the receiver.

• Reliable Communication, Messaging provides reliable delivery. The

messaging system uses a store and forward approach to transmitting messages.

The data is packaged as messages, which are atomic, independent units. When

the sender sends a message, the messaging system stores the message. It then

delivers the message by forwarding it to the receiver’s computer. Storing the

message on the sender’s computer and the receiver’s computer is assumed to

be reliable

• Disconnected Operation, Some applications are specifically designed to run

disconnected from the network, yet to synchronize with servers when a

network connection is available. Messaging is ideal for enabling these

applications to synchronize—data to be synchronized can be queued as it is

created, waiting until the application reconnects to the network.

• Mediation, The messaging system acts as a mediator between all of the

programs that can send and receive messages. An application can use it as a

directory of other applications or services available to integrate with. If an

application becomes disconnected from the others, it need only reconnect to

the messaging system, not to all of the other messaging applications. The

messaging system can be used to provide a high number of distributed

connections to a shared resource, such as a database. The messaging system

can employ redundant resources to provide high-availability, balance load,

reroute.

• Thread Management, Asynchronous communication means that one

application does not have to block while waiting for another application to

perform a task, unless it wants to. Rather than blocking to wait for a reply, the

caller can use a callback that will alert the caller when the reply arrives.

1.2.4 Challenges of Asynchronous Messaging

14

Asynchronous messaging is not the panacea of integration. It resolves many of the

challenges of integrating disparate systems in an elegant way but it also introduces

new challenges. Some of these challenges are inherent in the asynchronous model

while other challenges vary with the specific implementation of a messaging system.

• Complex programming model, asynchronous messaging requires developers

to work with an event-driven programming model. Application logic can no

longer be coded in a single method that invokes other methods, but the logic is

split up into a number of event handlers that respond to incoming messages.

• Sequence issues, message channels guarantee message delivery, but they do

not guarantee when the message will be delivered. This can cause messages

that are sent in sequence to get out of sequence.

• Synchronous scenarios, not all applications can operate in a send and forget

mode. Therefore, many messaging systems need to bridge the gap between

synchronous and asynchronous solutions.

• Performance, messaging systems add some overhead to communication. It

takes effort to make data into a message and send it, and to receive a message

and process it.

15

2. Background Information

2.1 Wireless communications protocols

2.1.1 Bluetooth

Bluetooth [2] is a short-range (10–100m) wireless link technology aimed at replacing

cables that connect phones, laptops, PDAs, and other portable devices, developed by

Bluetooth Special Interest Group (SIG).

The Bluetooth standard operates at 2.4 GHz in the ISM band with GFSK modulation.

The FHSS technique is used to reduce the effect of radio frequency interferences on

transmission quality. The Bluetooth devices sharing the same channel, form a network

called piconet, with a single unit acting as a master, the other units acting as slaves.

Up to eight devices constitute a piconet, with a master device coordinating access by a

polling scheme.

S

S

S

S

S

S

S

M

M Bluetooth Unit (Master)

Bluetooth Unit (Slave)

Piconet Scatternet

S

S

S

S

S

M

S

S

S / M

S

S

S

S / M Bluetooth Unit (Slave / Master)

Figure 2. Bluetooth Piconet & Scatternet

In many cases multiple piconets can cover the same area, a unit can participate in two

or more overlaying piconets by applying time multiplexing. To participate on the

16

proper channel, it should use the associated master device address and proper clock

offset to obtain the correct phase. A Bluetooth unit can act as a slave in several

piconets, but only as a master in a single piconet: since two piconets with the same

master are synchronized and use the same hopping sequence, they are one and the

same piconet. A group of piconets in which connections consists between different

piconets is called a scatternet.

The channel is represented by a pseudo-random hopping sequence in the 79 RF

channels of 1-MHz width. The raw data rate is 1 Mbit/s. The hopping sequence is

unique for the piconet and is determined by the Bluetooth master. The channel is

divided into time slots, where each slot corresponds to an RF hop frequency.

Consecutive hops correspond to different RF frequencies. The nominal hop rate is

1600 hops/s. A time division multiplexing (TDD) technique divides the channel into

625 µsecs slots and, with a 1-Mbit/s symbol rate, a slot can carry up to 625 bits.

Protocol Stack

Figure 3. Bluetooth Stack

SDP

The service discovery protocol (SDP) provides a means for applications to discover

which services are available and to determine the characteristics of those available

services.

17

RFCOMM

The Radio Frequency Communications (RFCOMM) protocol is a reliable streams-

based protocol. It provides roughly the same service and reliability guarantees as

TCP. The Bluetooth specification states that it was designed to emulate RS-232 serial

ports

L2CAP

The Logical Link Control and Adaption Protocol (L2CAP) is a packet-based protocol

that can be configured with varying levels of reliability. The default maximum packet

size is 672 bytes, but this can be negotiated up to 65,535 bytes after a connection is

established. L2CAP can be compared with UDP, which is a best-effort packet-based

protocol, but there are enough differences that the use cases for L2CAP are much

broader than the use cases for UDP. Both are packet-based protocols, but L2CAP

enforces delivery order.

HCI

The HCI provides a uniform interface method of accessing the Bluetooth hardware

capabilities. The HCI Link commands provide the Host with the ability to control the

link layer connections to other Bluetooth devices.

LMP

Used for control of the radio link between two devices, handling matters such as link

establishment, querying device abilities and power control. Implemented on the

controller.

2.1.2 802.15.4

802.15.4 [3] is a standard for wireless communication issued by the IEEE (Institute

for Electrical and Electronics Engineers). The IEEE is a technical professional

association that has written numerous standards to promote growth and

interoperability of existing and emerging technologies. IEEE has published the

standards that define communication in areas such as the Internet, PC peripherals,

industrial communication and wireless technology.

802.15.4 was developed aiming towards low data rate, simple connectivity,

connectionless data transfer, and battery dependant applications in mind. The

18

802.15.4 standard specifies that communication can occur in the 868-868.8 MHz, the

902-928 MHz or the 2.400-2.4835 GHz Industrial Scientific and Medical (ISM)

bands. While any of these bands can technically be used by 802.15.4 devices, the 2.4

GHz band is more popular as it is open in most of the countries worldwide. The 868

MHz band is specified primarily for European use, whereas the 902-928 MHz band

can only be used in the United States, Canada and a few other countries and territories

that accept the FCC regulations.

The 802.15.4 standard specifies that communication should occur in 5 MHz channels

ranging from 2.405 to 2.480 GHz. In the 2.4 GHz band, a maximum over-the-air data

rate of 250 kbps is specified, but due to the overhead of the protocol the actual

theoretical maximum data rate is approximately half of that. While the standard

specifies 5 MHz channels, only approximately 2 MHz of the channel is consumed

with the occupied bandwidth. At 2.4 GHz, 802.15.4 specifies the use of Direct

Sequence Spread Spectrum and uses an Offset Quadrature Phase Shift Keying (O-

QPSK) with half-sine pulse shaping to modulate the RF carrier. The graph below

shows the various channels at the spacing specified by 802.15.4.

The 802.15.4 standard allows for communication in a point-to-point or a point-to-

multipoint configuration. A typical application involves a central coordinator with

multiple remote nodes connecting back to this central host.

Figure 4. Typical 802.15.4 Topology

2.1.3 Zigbee

19

ZigBee [4] is a protocol that uses the 802.15.4 standard as a baseline and adds

additional routing and networking functionality. The ZigBee protocol was developed

by the ZigBee Alliance. The ZigBee Alliance is a group of companies that worked in

cooperation to develop a network protocol that can be used in a variety of commercial

and industrial low data rate applications. ZigBee is designed to add mesh networking

to the underlying 802.15.4 radio. Mesh networking is used in applications where the

range between two points may be beyond the range of the two radios located at those

points, but intermediate radios are in place that could forward on any messages to and

from the desired radios.

Figure 5. Zigbee Topologies

Devices in the ZigBee specification can either be used as End Devices, Routers or

Coordinators. Routers can also be used as End Devices. Since the ZigBee protocol

uses the 802.15.4 standard to define the PHY and MAC layers, the frequency, signal

bandwidth and modulation techniques are identical.

Because ZigBee was designed for low power applications, it fits well into embedded

systems and those markets where reliability and versatility are important but a high

bandwidth is not. The lower data rate of the ZigBee devices allows for better

20

sensitivity and range, but of course offers less throughput. The primary advantage of

ZigBee lies in its ability to offer low power and extended battery life.

 Zigbee / 802.15.4 Bluetooth

Focus Application Monitoring & Control Device Connectivity

Batter life Years 1 Week

Bandwidth 250kbps 720kbps

Typical Range 100+ meters 10-100 meters

Advantages Low power, cost Convenience

Table 1. Protocols Features

2.2 Operating systems

2.2.1 Linux

Linux [5] is a Unix-like and mostly POSIX-compliant computer operating system

(OS) assembled under the model of free and open-source software development and

distribution. Originally developed as a free operating system for personal computers

based on the Intel x86 architecture, but has since been ported to more computer

hardware platforms than any other operating system. It can also run on embedded

systems which are devices whose operating system is typically built into the firmware

and is highly tailored to the system.

2.2.2 TinyOS

TinyOS [6] is a lightweight operating system specifically designed for low-power

wireless sensors. It differs from most other operating systems in that its design

focuses on ultra-low-power operation. Rather than a full-fledged processor, TinyOS is

designed for the small, low-power microcontroller motes have. Furthermore, has very

aggressive systems and mechanisms for saving power.

TinyOS makes building sensor network applications easier. It provides a set of

important services and abstractions, such as sensing, communication, storage, and

timers. It defines a concurrent execution model, so developers can build applications

out of reusable services and components without having to worry about unforeseen

interactions. TinyOS runs on over a dozen generic platforms, most of which easily

support adding new sensors. Furthermore, its structure makes it reasonably easy to

port to new platforms. Applications and systems, as well as the OS itself, are written

21

in the nesC language. nesC is a C dialect with features to reduce RAM and code size,

enable significant optimizations, and help prevent low-level bugs like race conditions.

At a high level, TinyOS provides three things to make writing systems and

applications easier:

• Component model, define how to write small, reusable pieces of code and

compose them into larger applications.

• Concurrent execution model, define how components interleave their

computations.

• Application programming interfaces (API), services, component libraries

and an overall component structure that simplify writing new applications and

services.

2.3 Messaging Protocols

2.3.1 AMQP

The Advanced Message Queuing Protocol (AMQP) [7] is an open standard

application layer protocol for message-oriented middleware. The defining features of

AMQP are message orientation, queuing, routing (including point-to-point and

publish-and-subscribe), reliability and security.

AMQP is a binary, application layer protocol, designed to efficiently support a wide

variety of messaging applications and communication patterns. It provides flow

controlled, message-oriented communication with message-delivery guarantees such

as at-most-once (where each message is delivered once or never), at-least-once (where

each message is certain to be delivered, but may do so multiple times) and exactly-

once (where the message will always certainly arrive and do so only once), and

authentication and/or encryption based on SASL and/or TLS. It assumes an

underlying reliable transport layer protocol such as Transmission Control Protocol

(TCP).

AMQP is divided up into separate layers.

Transport Layer

22

The AMQP Transport Layer defines a peer-to-peer protocol for transferring Messages

between Nodes in the AMQP network. This layer is not concerned with the internal

workings of any sort of Node, and only deals with the mechanics of unambiguously

transferring a Message from one Node to another.

Nodes are named entities responsible for the safe storage and/or delivery of Messages.

Messages can originate from, terminate at, or be relayed by Nodes. The AMQP

Network consists of Nodes connected via Links.

A Link is a unidirectional route between two Nodes. Links attach to a Node at a

Terminus. There are two kinds of Terminus: Sources and Targets. A Terminus is

responsible for tracking the state of a particular stream of incoming or outgoing

messages. Sources track outgoing messages and Targets track incoming messages.

Messages may only travel along a Link if they meet the entry criteria at the Source.

As a Message travels through the AMQP network, the responsibility for safe storage

and delivery of the Message is transferred between the Nodes it encounters. The Link

Protocol manages the transfer of responsibility between the Source and Target. Nodes

exist within a Container, and each Container may hold many Nodes. Nodes can be

Producers, Consumers and Queues.

Messaging Layer

The transport layer defines a number of extension points suitable for use in a variety

of different messaging applications. The messaging layer specifies a standardized use

of these to provide interoperable messaging capabilities. This layer deals with

• Message format

• Delivery states for messages traveling between nodes

• Distribution nodes

• Sources and Targets

Transaction Layer

Transactional messaging allows for the coordinated outcome of otherwise

independent transfers. This extends to an arbitrary number of transfers spread across

any number of distinct links in either direction.

23

For every transactional interaction, one container acts as the transactional resource,

and the other container acts as the transaction controller. The transactional resource

performs transactional work as requested by the transaction controller. The

transactional controller and transactional resource communicate over a control link

which is established by the transactional controller.

Security Layer

Security Layers are used to establish an authenticated and/or encrypted transport over

which regular AMQP traffic can be tunneled. Security Layers may be tunneled over

one another (for instance a Security Layer used by the peers to do authentication may

be tunneled over a Security Layer established for encryption purposes). The framing

and protocol definitions for security layers are expected to be defined externally to the

AMQP specification as in the case of TLS. An exception to this is the SASL security

layer which depends on its host protocol to provide framing.

2.3.2 STOMP

STOMP [8] is a frame based protocol, with frames modelled on HTTP. A frame

consists of a command, a set of optional headers and an optional body. STOMP is text

based but also allows for the transmission of binary messages. The default encoding

for STOMP is UTF-8, but it supports the specification of alternative encodings for

message bodies.

A STOMP server is modelled as a set of destinations to which messages can be sent.

The STOMP protocol treats destinations as opaque string and their syntax is server

implementation specific. Additionally STOMP does not define what the delivery

semantics of destinations should be. The delivery, or “message exchange”, semantics

of destinations can vary from server to server and even from destination to

destination. This allows servers to be creative with the semantics that they can support

with STOMP.

A STOMP client is a user-agent which can act in two (possibly simultaneous) modes:

• As producer, sending messages to a destination on the server via a SEND

frame

• As consumer, sending a SUBSCRIBE frame for a given destination and

receiving messages from the server as MESSAGE frames.

24

STOMP is designed to be a lightweight protocol that is easy to implement both on the

client and server side in a wide range of languages. This implies, in particular, that

there are not many constraints on the architecture of servers and many features such

as destination naming and reliability semantics are implementation specific.

2.3.3 MQTT

MQTT [9] is an extremely simple and lightweight messaging protocol. Its

publish/subscribe architecture is designed to be open and easy to implement, with up

to thousands of remote clients capable of being supported by a single server. These

characteristics make MQTT ideal for use in constrained environments where network

bandwidth is low or where there is high latency and with remote devices that might

have limited processing capabilities and memory.

The MQTT protocol includes the following benefits:

• Extends connectivity beyond enterprise boundaries to smart devices.

• Offers connectivity options optimized for sensors and remote devices.

• Delivers relevant data to any intelligent, decision-making asset that can use it.

• Enable massive scalability of deployment and management of solutions.

MQTT minimizes network bandwidth and device resource requirements while

attempting to ensure reliability and delivery. This approach makes the MQTT

protocol particularly well-suited for connecting machine to machine (M2M), which is

a critical aspect of the emerging concept of Cyber Physical Systems.

The MQTT protocol includes the following features:

• Open and royalty-free for easy adoption. MQTT is open to make it easy to

adopt and adapt for the wide variety of devices, platforms, and operating

systems that are used at the edge of a network.

• A publish/subscribe messaging model that facilitates one-to-many distribution.

Sending applications or devices do not need to know anything about the

receiver, not even its address.

25

• Ideal for constrained networks (low bandwidth, high latency, data limits, and

fragile connections). MQTT message headers are kept as small as possible.

The fixed header is just two bytes, and it’s on demand, push-style message

distribution keeps network utilization low.

• Multiple service levels allow flexibility in handling different types of

messages. Developers can designate that messages will be delivered at most

once, at least once, or exactly once.

• Designed specifically for remote devices with little memory or processing

power. Minimal headers, a small client footprint, and limited reliance on

libraries make MQTT ideal for constrained devices.

• Easy to use and implement with a simple set of command messages. Many

applications of MQTT can be accomplished using just CONNECT, PUBLISH,

SUBSCRIBE, and DISCONNECT.

• Built-in support for loss of contact between client and server. The server is

informed when a client connection breaks abnormally, allowing the message

to be re-sent or preserved for later delivery.

Basic concepts of MQTT

The MQTT protocol is built upon several basic concepts, all aimed at assuring

message delivery while keeping the messages themselves as lightweight as possible.

i. Publish & Subscribe, The MQTT protocol is based on the principle of

publishing messages and subscribing to topics, which is typically referred to as

a publish/subscribe model. Clients can subscribe to topics that pertain to them

and thereby receive whatever messages are published to those topics.

Alternatively, clients can publish messages to topics, thus making them

available to all subscribers to those topics.

ii. Topics & Subscriptions, Messages in MQTT are published to topics, which

can be thought of as subject areas. Clients, in turn, sign up to receive particular

messages by subscribing to a topic. Subscriptions can be explicit, which limits

the messages that are received to the specific topic at hand or can use wildcard

designators, such as a number sign (#) to receive messages for a variety of

related topics.

26

iii. Quality of Service levels, MQTT defines three quality of service (QoS) levels

for message delivery, with each level designating a higher level of effort by

the server to ensure that the message gets delivered. Higher QoS levels ensure

more reliable message delivery but might consume more network bandwidth

or subject the message to delays due to issues such as latency.

iv. Retained messages, With MQTT, the server keeps the message even after

sending it to all current subscribers. If a new subscription is submitted for the

same topic, any retained messages are then sent to the new subscribing client.

v. Clean sessions and durable connections, when a MQTT client connects to

the server, it sets the clean session flag. If the flag is set to true, all of the

client’s subscriptions are removed when it disconnects from the server. If the

flag is set to false, the connection is treated as durable, and the client’s

subscriptions remain in effect after any disconnection. In this event,

subsequent messages that arrive carrying a high QoS designation are stored for

delivery after the connection is reestablished. Using the clean session flag is

optional.

vi. Wills, when a client connects to a server, it can inform the server that it has a

will, or a message, that should be published to a specific topic or topics in the

event of an unexpected disconnection. A will is particularly useful in alarm or

security settings where system managers must know immediately when a

remote sensor has lost contact with the network.

Benefits of using MQTT

Using the MQTT protocol extends message queueing to tiny sensors and other remote

telemetry devices that might otherwise be unable to communicate with a central

system or that might be reached only through the use of expensive, dedicated

networks. Network limitations can include limited bandwidth, high latency, volume

restrictions, fragile connections, or prohibitive costs. Device issues can include

limited memory or processing capabilities, or restrictions on the use of third-party

communication software. In addition, some devices are battery-powered, which puts

additional restrictions on their use for telemetry messaging.

MQTT was designed to overcome these limitations and issues and includes the

following underlying principles:

27

• Simplicity, the protocol was made open so that it can be integrated easily into

other solutions.

• Use of a publish/subscribe model, the sender and the receiver are decoupled.

Thus, publishers do not need to know who or what is subscribing to messages

and vice versa.

• Minimal Maintenance, features, such as automated message storage and

retransmission, minimize the need for on-the-fly administration.

• Limited on-the-wire footprint, the protocol keeps data overhead to a

minimum on every message.

• Continuous session awareness, by being aware of when sessions have

terminated, the protocol can take action accordingly, thanks in part to a will

feature.

• Local message processing, the protocol assumes that remote devices have

limited processing capabilities.

• Message persistence, through the designation of specific QoS, the publisher

can ensure delivery of the most important messages.

• Agnostic regarding data types, the protocol does not require that the content

of messages be in any particular format.

2.3.4 MQTT-SN

MQTT-SN [10] is designed to be as close as possible to MQTT, but is adapted to the

peculiarities of a wireless communication environment such as low bandwidth, high

link failures, short message length, etc. It is also optimized for the implementation on

low-cost, battery-operated devices with limited processing and storage resources.

MQTT-SN differences from MQTT,

i. The CONNECT message is split into three messages. The two additional ones

are optional and used to transfer the Will topic and the Will message to the

server.

ii. To cope with the short message length and the limited transmission bandwidth

in wireless networks, the topic name in the PUBLISH messages is replaced by

a short, two-byte long “topic id”. A registration procedure is defined to allow

28

clients to register their topic names with the server/gateway and obtain the

corresponding topic ids. It is also used in the opposite direction to inform the

client about the topic name and the corresponding topic id that will be

included in a following PUBLISH message

iii. “Pre-defined” topic ids and “short” topic names are introduced, for which no

registration is required. Predefined topic ids are also a two-byte long

replacement of the topic name, their mapping to the topic names is however

known in advance by both the client’s application and the gateway/server.

Therefore both sides can start using pre-defined topic ids; there is no need for

a registration as in the case of “normal” topic ids mentioned above. Short topic

names are topic names that have a fixed length of two octets. They are short

enough for being carried together with the data within PUBLISH messages.

As for pre-defined topic ids, there is also no need for a registration for short

topic names.

iv. A discovery procedure helps clients without a pre-configured server/gateway’s

address to discover the actual network address of an operating server/gateway.

Multiple gateways may be present at the same time within a single wireless

network and can co-operate in a load-sharing or stand-by mode.

v. The semantic of a “clean session” is extended to the Will feature, i.e. not only

client’s subscriptions are persistent, but also Will topic and Will message. A

client can also modify its Will topic and Will message during a session.

vi. A new offline keep-alive procedure is defined for the support of sleeping

clients. With this procedure, battery-operated devices can go to a sleeping state

during which all messages destined to them are buffered at the server/gateway

and delivered later to them when they wake up.

2.4 Network devices

2.4.1 Sensors / Actuators

A sensor [11] is an object whose purpose is to detect events or changes in its

environment, and then provide a corresponding output, where actuator get this

corresponding output and act if necessary. A sensor is a type of transducer; sensors

may provide various types of output, but typically use electrical or optical signals.

29

Sensors utilize a wide spectrum of transducer and signal transformation approaches

with corresponding variations in technical complexity. These range from relatively

simple temperature measurement based on a bimetallic thermocouple, to the detection

of specific bacteria species using sophisticated optical systems. There are no uniform

descriptions of sensors or the process of sensing. In many cases, the definitions

available are driven by application perspectives.

There are many types of sensors, some of them listed below.

• Mechanical Sensors

Mechanical sensors are based on the principle of measuring changes in a device or

material as the result of an input that causes the mechanical deformation of that

device or material.

• MEMS Sensors

The name MEMS is often used to describe both a type of sensor and the

manufacturing process that fabricates the sensor. MEMS are three-dimensional,

miniaturized mechanical and electrical structures, typically ranging from 1 to 100

mm, which are manufactured using standard semiconductor manufacturing

techniques. MEMS consist of mechanical microstructures, micro-sensors, micro-

actuators, and microelectronics, all integrated onto the same silicon chip.

• Optical Sensors

Optical sensors work by detecting waves or photons of light, including light in the

visible, infrared, and ultraviolet (UV) spectral regions. They operate by measuring

a change in light intensity related to light emission or absorption by a quantity of

interest. They can also measure phase changes occurring in light beams due to

interaction or interference effects.

• Semiconductor Sensors

30

Semiconductor sensors have grown in popularity due to their low cost, reliability,

low power consumption, long operational lifespan, and small form factor. This

type of sensors are Gas Sensors, Temperature sensors.

• Electrochemical Sensors

An electrochemical sensor is composed of a sensing or working electrode, a

reference electrode, and, in many cases, a counter electrode. These electrodes are

typically placed in contact with either a liquid or a solid electrolyte. In the low-

temperature range (<140° C), electrochemical sensors are used to monitor pH,

conductivity, dissolved ions, and dissolved gases.

• Biosensors

Biosensors use biochemical mechanisms to identify and analyze of interest in

chemical, environmental (air, soil, and water), and biological samples (blood,

saliva, and urine). The sensor uses an immobilized biological material, which

could be an enzyme, antibody, nucleic acid, or hormone, in a self-contained

device. The biological material being used in the biosensor device is immobilized

in a manner that maintains its bioactivity.

2.4.2 Message Brokers

A message broker is an intermediary module which translates a message from the

formal messaging protocol of the sender to the formal messaging protocol of the

receiver. Message brokers are elements in telecommunication networks where

programs (software applications) communicate by exchanging formally-defined

messages. It mediates communication amongst applications, minimizing the mutual

awareness that applications should have of each other in order to be able to exchange

messages, effectively implementing decoupling. The main purpose of a message

broker it to take incoming messages from applications and perform some action on

them. Some of the action define below.

• Route messages to one or more of many destinations.

• Transform messages to an alternative representation.

31

• Perform message aggregation, decomposing messages into multiple messages

and sending them to their destination, then recomposing the responses into one

message to return to the user.

• Interact with an external repository to augment a message or store it.

• Invoke Web services to retrieve data.

• Respond to events or errors.

• Provide content and topic-based message routing using publish–subscribe

pattern.

Well known message brokers are described below.

Really Small Message Broker

Really Small Message Broker (aka RSMB) [12] is a small server that uses MQ

Telemetry Transport (MQTT) for lightweight, low-overhead messaging. It enables

messaging to and from tiny devices such as sensors and actuators over networks that

might have low bandwidth, high cost, and varying reliability. "Publishers" send

messages to the broker, which then distributes the messages to the "subscribers" who

have requested to receive those messages.

RSMB has a "bridge" that enables connections to other MQTT-capable servers; this

bridge allows messages to be passed between RSMB instances as well as to other

MQTT servers such as ActiveMQ. RSMB can run in embedded systems in order to

provide a messaging infrastructure in remote installations and pervasive

environments. Given Really Small Message Broker's low memory requirements, it

can help extend the reach of the MQTT messaging infrastructure to the smallest

components.

Mosquitto

Mosquitto [13] provides a lightweight server implementation of the MQTT and

MQTT-SN protocols, written in C. The reason for writing it in C is to enable the

server to run on machines which do not even have capacity for running a JVM.

Sensors and actuators, which are often the sources and destinations of MQTT and

32

MQTT-SN messages, can be very small and lacking in power. This also applies to the

embedded machines to which they are connected.

As well as accepting connections from MQTT client applications, Mosquitto has a

bridge which allows it to connect to other MQTT servers, including other Mosquitto

instances. This allows networks of MQTT servers to be constructed, passing MQTT

messages from any location in the network to any other, depending on the

configuration of the bridges.

ActiveMQ

ActiveMQ [14] is an open source, Java Message Service (JMS) 1.1–compliant,

message-oriented middleware (MOM) from the Apache Software Foundation that

provides high availability, performance, scalability, reliability, and security for

enterprise messaging, which is licensed using the Apache License. The goal of

ActiveMQ is to provide standards-based, message-oriented application integration

across as many languages and platforms as possible. Implements the JMS spec and

offers dozens of additional features and value on top of this spec.

2.4.3 Gateways

Gateways perform protocol translation between different networks. A gateway can

operate at any network layer, and, unlike a router or a switch, a gateway can

communicate using more than one protocol. PCs, servers, and M2M devices can

function as gateways, although they are most commonly found in routers. In a sensor

network, a gateway is responsible for interfacing the data from the sensor nodes to

another network that uses a different protocol, and delivering commands back from

that network to the nodes. Gateways work on OSI layers 4-7.

33

3. Network Architecture

As shown in the figure 6, above, the network architecture that we propose consists

from multiple services and communication protocols.

ServicesServicesServicesServicesWirelessWirelessWirelessWireless

SensorSensorSensorSensor

NetworkNetworkNetworkNetwork
GatewayGatewayGatewayGateway

Network Network Network Network

CoordinatorCoordinatorCoordinatorCoordinator

TCPTCPTCPTCP

MQTTMQTTMQTTMQTT----SNSNSNSN

MessageMessageMessageMessage

BrokersBrokersBrokersBrokers

MQTTMQTTMQTTMQTT

Monitor ServiceMonitor ServiceMonitor ServiceMonitor Service

MQTTMQTTMQTTMQTT

TCPTCPTCPTCP

End UserEnd UserEnd UserEnd User

HTTPHTTPHTTPHTTP

DataDataDataData

StorageStorageStorageStorage

MQTTMQTTMQTTMQTT

TCPTCPTCPTCP

TCPTCPTCPTCP

MQTTMQTTMQTTMQTT

Figure 6. Network Architecture

In the wireless sensor network, we implement basic applications that communicate

over Bluetooth [2] and 802.15.4 [3] with our gateway. Gateway is an intermediate

component, vital, whose main scope is to translate data which come from WSN to

appropriate format in order to transmit them over IP network. In the gateway we

implement interfaces for the communication with the WSN, such as Bluetooth and

CC2420 adapters, as well as interfaces for the communication with the IP network,

such as Messaging client. Each service in the network must register itself, in order to

inform other services about its presence. This achieved using the Network

coordinator, which each service register itself, and store what it is offer to the

network. Network coordinator will used from other services, to retrieve

configurations, as well as for service discovery inside the network. The

34

communication between gateways and the services in the IP network made through

Message Broker, which is responsible to forward the messages to all interested

parties. Each service must inform Message Broker about the data wants to receive.

Data storage service, used as the basic storage, firstly for storing collected data from

WSN, and then for any type data needs to be stored. Finally we implement the

monitor service, in order to help end users, configure and monitor both WSN and IP

network, through a simple web interface.

3.1 Communication Protocols

As depicted in figure 6 our network architecture, consists from multiple

communication protocols in order to accomplish communication in a heterogeneous

environment. On the wireless sensor network the technologies used from the sensors

and actuators to communicate with gateway and in turn with the IP network are

Bluetooth and 802.15.4 compliant technologies, and all these communications

abstracted using the MQTT-SN protocol.

The Gateway (GW) needs many connections, in order to accomplish its tasks. In our

architecture beyond the connection with the WSN, establish two more connections

further, one with the message broker, which use the MQTT protocol for send and

receive messages from the IP network and the WSN respectively, and the other with

the network coordinator, explained in more detail in a later chapter, via a TCP

connection. All the IP network components, except network coordinator, that want to

send to and receive messages, must connect with message broker using the MQTT

protocol. Finally the HTTP protocol used for connecting end users with the network

in order to configure, parameterized and monitor the traffic on both WSN and IP

network.

3.2 Gateway

Depending on how a gateway performs the protocol translation between MQTT-SN

and MQTT, we can differentiate between two types of gateways, namely transparent

and aggregating Gateways [10], as shown in Figure 7.

Transparent Gateway

35

For each connected MQTT-SN client a transparent GW will setup and maintain a

MQTT connection to the MQTT server. This MQTT connection is reserved

exclusively for the end-to-end and almost transparent message exchange between the

client and the server. There will be as many MQTT connections between the GW and

the server as MQTT-SN clients connected to the GW. The transparent GW will

perform a “syntax” translation between the two protocols. Since all message

exchanges are end-to-end between the MQTT-SN client and the MQTT server, all

functions and features that are implemented by the server can be offered to the client.

Although the implementation of the transparent GW is simpler when compared to the

one of an aggregating GW, explained below, it requires the MQTT server to support a

separate connection for each active client. Some MQTT server implementations might

impose a limitation on the number of concurrent connections that they support.

Aggregating

Gateway

Network

Broker

Network

Broker

MQTT-SN

MQTT-SN

MQTT-SN

MQTT

Transparent

Gateway

MQTT-SN

MQTT-SN

MQTT-SN

MQTT

MQTT

MQTT

 Figure 7. Gateway types

Aggregating Gateway

Instead of having a MQTT connection for each connected client, an aggregating GW

will have only one MQTT connection to the server. All message exchanges between a

MQTT-SN client and an aggregating GW end at the GW. The GW then decides which

information will be given further to the server. Although its implementation is more

complex than the one of a transparent GW, an aggregating GW may be helpful in case

of WSNs with very large number of Sensors-Actuators because it reduces the number

of MQTT connections that the server has to support concurrently.

36

3.3 Network Coordinator

In order to run large systems correctly and efficiently within these systems should

have some sort of agreement among themselves. It is difficult to design a large

system, and it's even harder when a collection of individual computing entities are

programmed to function together. In this point we need a component inside our

network that will be responsible for:

1. Configuration management

2. Network Rules

3. Detect of node leave / join

4. Services registration and discovery

5. Network tasks

6. Synchronization

With the presence of the network coordinator we can accomplish:

• Resource sharing: This refers to the possibility of using the resources in the

system, such as storage space, computing power, data, and services from

anywhere, and so on.

• Extendibility: This refers to the possibility of extending and improving the

system incrementally.

• Concurrency: This refers to the system's capability to be used by multiple

nodes at the same time.

• Performance and Scalability: This ensures that the response time of the

system doesn't degrade as the overall load increases.

• Fault Tolerance: This ensures that the system is always available even if

some of the components fail or operate in a degraded mode.

• Abstraction through APIs: This ensures that the system's individual

components are concealed from the end users, revealing only the end services

to them.

3.4 Network Broker

37

In our architecture network broker is the responsible component which receive and

forward messages to all interested parties. The broker, we use in our infrastructure is

Apache ActiveMQ [14].

ActiveMQ is an open source, Java Message Service (JMS) – compliant, message-

oriented middleware (MOM) from the Apache Software Foundation that provides

high availability, performance, scalability, reliability, and security for enterprise

messaging. The goal of ActiveMQ is to provide standards-based, message-oriented

application integration across as many languages and platforms as possible.

ActiveMQ implements the JMS spec and offers dozens of additional features and

value on top of this spec. One of the key characteristics of ActiveMQ is that support

multiple messaging connectors, such as AMQP, STOMP, MQTT.

Some of the key features described below:

• JMS Compliance

ActiveMQ is an implementation of the JMS 1.1 spec. The JMS spec provides

important benefits and guarantees, including synchronous or asynchronous

message delivery, once-and-only- once message delivery, message durability for

subscribers, and much more.

• Connectivity

ActiveMQ provides a wide range of connectivity options, including support for

protocols such as HTTP/S, IP multicast, SSL, AMQP, STOMP, TCP, UDP,

MQTT, and more. Support for such a wide range of protocols equates to more

flexibility.

• Pluggable persistence and Security

ActiveMQ provides multiple flavors of persistence and you can choose between

them, default is KahaDB [15]. Also, security in ActiveMQ can be completely

customized for the type of authentication and authorization that’s best for your

needs. ActiveMQ also supports its own simple style of authentication and

authorization using properties files as well as standard JAAS login modules.

• Integration with application servers

38

It’s common to integrate ActiveMQ with an application server, such as Apache

Tomcat, Jetty, Apache Geronimo, and JBoss.

• Many client APIs

ActiveMQ provides client APIs for many languages besides just Java, including

C/C++, .NET, Perl, PHP, Python, Ruby, and more. This opens the door to

opportunities where ActiveMQ can be utilized outside of the Java world.

• Clustering

Many ActiveMQ brokers can work together as a federated network of brokers for

scalability purposes. This is known as a network of brokers and can support many

different topologies.

3.5 Services

Services [16] are small autonomous components in the network, which expose in our

network what types of data can handle or process and what types of data can offer to

the network, in order other services to use to accomplish a task. An example of such a

service is the monitoring of the wireless sensor network. A service like that will be

processing the data which receive and then inform all the interested services about the

changes made. A service can have configurations, parameters and rules that can be

defined in three different levels

1. Network level, all the configuration, parameters and rules will be fetched

from a service that hold this type of information, like Network coordinator or

Data Storage service.

2. Service level, all the configuration, parameters and rules will be defined inside

the service.

3. Mixed level, some the configuration, parameters and rules will be fetched

from a service that hold this type of information, and some of them will be

defined inside the service.

The presence and discovery of a service in the network can be accomplished through

the network coordinator. Each service must create an entry to network coordinator and

it is responsible to define all the necessary information for other services to discover

and communicate with it. A typical entry of a service in the coordinator may have

39

• IP Address or Domain, define the location of service.

• Connection type, define the type of the communication e.g. MQTT

• Incoming message, define the incoming message format, that can handle

• Outgoing message, define the format of the outgoing message.

Some of the services our network contains described below.

3.5.1 Data storage

Data storage component is a cluster of databases which will be used by the framework

for storing and retrieving data or configurations that services in the network wants. An

example of such data will be a list of topic ids of the MQTT-SN protocol, and the

string representation of topic id to a topic name of the MQTT protocol. This type of

data will be fetched from a gateway in order to match topic ids with the topic names

between WSN and IP network, and then route the data to defined topic name.

3.5.2 Monitoring / Configuration

Monitoring-configuration component is web interface where end users, such as

administrators, could configure both IP network and WSN. An example of such a

configuration, is when an administrator insert to database a topic id, and a topic name

for this id. Another possibility that will be provided from this component is to allow

administrator to watch wireless sensor network traffic and measurements, and make

all the necessary actions, such as parametrized network configurations and rules.

40

4. Infrastructure Implementation

4.1 Network Coordinator

In our network as a coordination service we use Apache Zookeeper. Apache

ZooKeeper [17] is a software project of the Apache Software Foundation; it provides

an open source solution to the various coordination problems in large distributed

systems.

Apache ZooKeeper, as a centralized coordination service, is distributed and highly

reliable, running on a cluster of servers called a ZooKeeper ensemble. Distributed

consensus, group management, presence protocols, and leader election are

implemented by the service so that the applications do not need to reinvent the wheel

by implementing them on their own. On top of these, the primitives exposed by

ZooKeeper can be used by applications to build much more powerful abstractions to

solve a wide variety of problems.

Coordinator data model

ZooKeeper allows distributed processes to coordinate with each other through a

shared hierarchical namespace of data registers. The namespace looks quite similar to

UNIX filesystem. The data registers are known as znodes in the ZooKeeper

nomenclature. The data in a znode is typically stored in a byte format, with a

maximum data size in each znode of no more than 1 MB. A typical structure on

Apache Zookeeper shown in figure below

Figure 8. Zookeeper structure

41

Type of znodes

Zookeeper defines two types of znodes, Persistent and ephemeral which each of them

can be defined as sequential or not. A sequential znode is assigned a sequence

number by ZooKeeper as a part of its name during its creation. The value of a

monotonously increasing counter (maintained by the parent znode) is appended to the

name of the znode. The counter used to store the sequence number is a signed integer

(4 bytes). It has a format of 10 digits with 0 (zero) padding. For example, look at

/path/to/znode-0000000001. This naming convention is useful to sort the sequential

znodes by the value assigned to them.

Persistent znodes

Persistent znodes have a lifetime in the Zookeeper’s namespace until they are

explicitly deleted. A znode can be deleted by calling the delete API call. It's not

necessary that only the client that created a persistent znode has to delete it. Note that

any authorized client of the ZooKeeper service can delete a znode. Persistent znodes

are useful for storing data that needs to be highly available and accessible by all the

components of a distributed application. For example, an application can store the

configuration data in a persistent znode. The data as well as the znode will exist even

if the creator client dies.

Ephemeral znodes

An ephemeral znode is deleted by the ZooKeeper service when the creating client's

session ends. An end to a client's session can happen because of disconnection due to

a client crash or explicit termination of the connection. Even though ephemeral nodes

are tied to a client session, they are visible to all clients, depending on the configured

Access Control List (ACL) policy. An ephemeral znode can also be explicitly deleted

by the creator client or any other authorized client by using the delete API call. An

ephemeral znode ceases to exist once its creator client's session with the ZooKeeper

service ends. Hence, in the current version of ZooKeeper, ephemeral znodes

are not allowed to have children. The concept of ephemeral znodes can be used to

build distributed applications where the components need to know the state of the

other constituent components or resources.

42

Coordinator Structure

/

/brokers /gateways /services

/broker-

0001

/broker-

0002

/gateway-

0001

/gateway-

0002

/mote-0001 /mote-0002 /mote-0003 /mote-0004 /mote-0005

/storage /handlers

storage-

0001

/handler-

0001

Persistent znode

Ephemeral znode

Figure 9. Network Coordinator Structure

As shown in figure 9, our structure consists of three main znodes, namely brokers,

gateways and services, which cannot be deleted. Under the /brokers znode will be the

available network brokers, which every service or component can fetch them, and

then decide with which broker wants to connect. Under the /gateways znode, we

create persistent znodes with the gateway name in format gateway-<identifier>, these

znodes are created from the network administrators. When the gateway connect to our

IP network, is responsible to change the status of the znode, in order to inform all

other interested components of the network that this gateway is online. Each gateway

znode has children which are sensors or actuators of a WSN. These ephemeral znodes

are created when a WSN node connected with the gateway. Gateway is responsible to

create, update and delete each znode. The last znode, /services, as the name implies

contains all the network available services. The first child of the /services znode

implies the type of service, for example, as shown in figure 9, znode /storage contains

available data storage services. The naming for each available service is just like

gateway znode.

43

4.2 Network Broker

As we mentioned in previous chapter in our framework, as main Broker in the IP

network we use Apache ActiveMQ [14]. In this chapter will be describe some of the

configurations on the broker. The basic configuration of the broker located in

activemq.xml file. As the suffix implies the data format of the configuration is in

XML, where each parameter defined inside tags.

Transport Mechanism

Transport connectors are defined inside the transportConnectors tag. A typical

connector definition appears below:

<transportConnector name="mqtt" uri="mqtt://0.0.0.0:1883"/>

In the definition above we enable the mqtt messaging protocol, which defined with the

attribute name. The uri specifies the connector that should be used. In the preceding

line, the 0.0.0.0 address means that ActiveMQ will listen on all interfaces and address

on the server. For instance, if the address was 127.0.0.1, then only local connections

will be allowed, and no one could be connect to the broker from another machine.

Authentication Mechanism

ActiveMQ allows us to define authentication mechanism in order to connect a

component to the broker. The authentication mechanism is defined inside <plugins>

tag, as shown above

<plugins>

 <simpleAuthenticationPlugin anonymousAccessAllowed="false">

 <users>

 <authenticationUser username=".." password="…" groups=""/>

 </users>

 </simpleAuthenticationPlugin>

</plugins>

44

The tag used for the authentication is simpleAuthenticationPlugin and with attribute

anonymousAccessAllowed=”false” we inform broker not to accept anonymous

connections. Inside the users tags we define the authentication credentials. Groups

attribute is the groups of the user defined, which inform broker about the access rights

of the defined users.

4.3 Gateway

Gateway is the main entrance of the data collected from sensors in the physical

environment, which makes it, a fundamental component to the network. Data came

for sensors, are asynchronously data, different types of data, from different

communication technologies, that must be parsed, analyzed, translate and finally

forwarded to the network. Gateway work as mediator, who implements adapters for

parse the data from different communication technologies, such as Bluetooth and

802.15.4, analyze them and extract the useful information, create compatible

messages from the information extracted and finally forward them to the network or

not. Without the presence of the gateway will not be possible for the various

communication technologies talk to each other.

4.3.1 Architecture

Kernel

Load Configurations

W
SN

 C
o

m
m

Embedded DB

Configurations

Local Storage

IP
 C

o
m

m

M
Q

T
T

H
T

TP
8

0
2

.1
5

.4
B

lu
e

to
o

th

Figure 10. Gateway Architecture

45

Figure 10 show our gateway architecture. The gateway consists from five main

components named Kernel, Configurations, Embedded DB, IP Communicator and

finally the WSN Communicator. The Kernel component is the brain of the gateway,

which is responsible for:

1. Loading the configurations from the Configuration component.

2. Initialize and hold the connection with the Embedded DB.

3. Initialize the communication with the IP Network and WSN, throw the

components (WSN Comm. & IP Comm.).

4. Route data and messages between each main components.

4.3.2 Configurations

All the configurations for the gateway will be defined in the gateway.json file. The

format of the configurations as indicated by the suffix of the file is JSON [20]. The

reason that will choose JSON as configuration format instead of XML is that JSON is

more readable than XML, lightweight and the configurations in both coordinator and

Database are stored in JSON format, and we want to keep uniform schemas. Some of

the basic configuration parameters of the gateway are described in the table below.

Parameter Explanation Values

gwid Gateway identifier, Must

be the same with that

name that stored in

Storage and Coordinator

gateway-0001

type Define the type of

gateway, for more info

check Chapter 3.2

aggregate | transparent

coordinator Information about the

connection with the

coordinator of the

network

{

 "host": "domain",

 "port": 2181,

 "username": "",

 "password": ""

}

interfaces List with connection

interfaces for the WSN,

1. ble

2. bt

46

can be more than one. 3. zigbee

4. 802154

connection_mode Gateway connection

mode to WSN, explained

below.

1. force_connect

2. stand_by

3. invisible

4. closed

communication_protocols List with connections to

the backend network, can

be more than one.

1. mqtt

2. amqp

3. stomp

4. websocket

5. soap

6. http

data_process Define how the gateway

will be handle the data

from the sensor networks,

explained below

1. pass_through

2. buffering

3. calculate

subscriptions Contains a list with

predefined subscriptions

to topics or queues of the

gateway

["/wsn/framework"]

edb Embedded Database name gatewayedb

Table 2. Gateway Configurations

Gateway connection mode

Gateway connection mode define how the gateway will behave with the wireless

sensor network. As mentioned in the table above, gateway can be in four different

connection modes.

1. force_connect, in this mode gateway will start searching for devices in the

network, and when finds a mote will try to connect with it. This is the default

connection mode for the gateway.

2. stand_by, the gateway will send a broadcast message in order to inform the

network motes for its presence, and then will wait from the sensor motes to

make a connection request.

47

3. invisible, in this mode the gateway will be online, but will not send a

broadcast message in order to inform the network for its presence. Only the

devices know its existence will try to connect with the gateway.

4. closed, in closed mode the gateway will be online nobody knows about its

existence and no connections can be established.

Data processing

This configuration parameter will inform the gateway how to handle data derived

from the wireless sensors network. Gateway have three different modes for the data

processing.

1. pass_through, in this mode every incoming data will be pass directly to the IP

network.

2. buffering, the incoming data will be stored locally to the gateway. In this

mode the gateway will be defined at startup or will be switched when a

connection with IP network lost.

3. process, in this mode gateway will be process the incoming data according to

the given implementation, and then according to the rules defined will process

the incoming data.

4.3.3 Embedded DB

Our solution provide an embedded DB for a series of actions that will persist in the

gateway. Instead of using just files for this persistence we create a key-value database,

which is based on mapDB [18]. MapDB is an embedded database engine for Java. It

provides Maps and other collections backed by disk or off-heap memory storage.

MapDB is not a database, but an engine. It is not complete solution, but a set of

building blocks such as: memory allocators, caches, storages, indexes, transaction

wrappers etc. This gives MapDB lot of flexibility and space for performance

optimizations and small footprint.

We expose a very simple API for gateway internal components to use the database,

which consists from five methods:

• save, add a new value to a collection.

48

• update, update an existing value in a collection.

• delete, delete an existing value in a collection

• get, get a specific value from a collection

• fetch, get a list of values from a collection

In the backend of the database we organize our data into collections. Collections are

groups of key-value entry. For example, in order to keep track which sensors devices

are connected to gateway, we have the devices collection.

The most important actions that will performed from the embedded DB are:

1. Store of the WSN devices and their properties.

2. Devices subscriptions.

3. Internal gateway rules, such as handlers for the data.

4. Buffering functionality for WSN sensor data.

5. Data formats, in case of need to read the data locally.

6. Routing rules.

4.3.4 IP Communicator

The IP communicator is responsible to set up the connections defined in the

configurations of the gateway with the IP network, as name implies. As shown in

figure 10, the gateway configured to set up two communications with the IP network,

HTTP and MQTT, more than these connections can be define. For the HTTP

communication the client will create an HTTP client and will wait for data sourced

from the WSN in order to send to HTTP API. The creation of a MQTT connection,

and in more general a message passing connection is more complicated than a simple

HTTP client. Connection procedure shown in figure 11.

49

Gateway Coordinator Broker

Connect

OK

getBrokers

List of Brokers

connectToBroker

OK

chooseBroker

Figure 11. Message passing protocol connection procedure

After the connection of the gateway with the coordinator, gateway will fetch from

coordinator all the available brokers, and in our case will fetch all the brokers that

support MQTT protocol. Then will choose one broker from the list and will try to

connect with it. The choice of the broker is based on a single ping, and the broker with

the smallest response time will be selected.

4.3.5 WSN Communicator

The WSN Communicator is responsible to initialize gateway wireless interfaces based

on the configurations. As shown in figured 10, the gateway configured to initialize

two communications with the wireless sensor network, Bluetooth and 802.15.4. After

the initialization of the interfaces its component is autonomous which will forward all

the data sourced from the WSN to Communicator which is responsible, according to

rules to forward or store the data. The same thing will happen when the data come

from the other side, IP network. Its subcomponent of the WSN communicator is

responsible, according to gateway connection_mode configuration of the gateway to

start or not, sensor nodes discovery and connection.

50

4.4 Services

4.4.1 Services Architecture

For the definition of the services in the network we use the micro-services

architectural patterns. With this type of architecture we can plug any component

(service) on the network and be available directly to all others service to use it. To this

help the presence of the coordinator, which every service register its self on it. Any

new service wants to connect to the network, after its registration will fetch from the

coordinator information that it needs for.

Mail

Service

Coordinator

Service

Monitoring

Service

Network

Configuration

Service

Storage

Service

Network

 Monitoring

Service

Messaging

Service

Figure 12. Microservices Architecture

For example, the monitoring service wants to send an email for an abnormal situation

on the sensor network. After connecting to the coordinator service, will fetch all the

services that provide email service, with the configurations that will be used later to

send the email.

Figure 12 shows a set of services in our IP network. All this services are connected

together using multiple communication protocols. Some services such as Mail service

expose a simple HTTP API in order to other services to communicate with. Storage

service is provided through MQTT message protocol. Finally other services such as

Network monitoring service does not provide any communication interface for

receiving data, but connect to other services in order to fetch data from them.

51

4.5.2 Data storage

In our storage service the main Database is MongoDB [19]. MongoDB is popular as it

is fast and flexible with excellent community support. It is a document-oriented

database, fitting in somewhere between Key-Value stores and traditional relational

databases. MongoDB stores documents as BSON, which is effectively binary-encoded

JSON [20]. When you run a query you get a JSON object returned (or a string in

JSON format, depending on the driver). Look at the following code snippet for

example:

{ "_id" : ObjectId("4ffbc45c35097b5a1583ad71"), "addr" : "001060AA36F8",

"status" : 1}

So, a document is a set of keys (for example, addr) and values (for example,

001060AA36F8). The _id entry is a unique identifier that the underlying MongoDB

driver will—by default—create for each new document.

Some features of MongoDB described below

• Document data model, MongoDB’s data model is document-oriented. A

document is essentially a set of property names and their values. The values

can be simple data types, such as strings, numbers, and dates.

• Ad-hoc queries, Ad hoc queries are easy to take for granted if the only

databases you’ve ever used have been relational. But not all databases support

dynamic queries.

• Secondary indexes, Secondary indexes in MongoDB are implemented as B-

trees. B-tree indexes, also the default for most relational databases, are

optimized for a variety of queries, including range scans and queries with sort

clauses. By permitting multiple secondary indexes, MongoDB allows users to

optimize for a wide variety of queries. You can create up to 64 indexes per

collection.

• Replication, MongoDB provides database replication via a topology known as

a replica set. Replica sets distribute data across machines for redundancy and

automate failover in the event of server and network outages.

• Speed and Durability, Write speed can be understood as the volume of

inserts, updates, and deletes that a database can process in a given time frame,

where Read speed can be understood as the volume of read in a given time

52

frame. Durability refers to level of assurance that these write operations have

been made permanent. Users control the speed and durability trade-off by

choosing write semantics and deciding whether to enable journaling.

• Scaling, MongoDB use vertical scaling or scaling up. Vertical scaling has the

advantages of being simple, reliable, and cost-effective up to a certain point.

Database Structure

Figure 13. Database Structure

As depicted on figure 13, our database implementation is simple, it’s only contains 6

collections, we analyze each collection below,

• data_types, contain sensor data type, e.g. accelerometer.

• devices, contain all the known wireless sensor network devices, what is worth

mentioning is the data_type_id and connections fields, where we identify

which data the device carry(data_type_id) and which is the connections with

our network, e.g. Bluetooth.

• gateways, contain all the gateways of our network. A typical document for a

gateway shown in Table 2 below

_id 0001

identifier gateway-0001

53

interfaces ["802154", "BT"]

configurations {

"broker":"fetch",

"connection_mode":"force_connect",

"type" : "aggregating",

"protocols":["mqtt","http"]

 }

createdAt 2015-10-10 23:00:00

updatedAt 2015-10-10 23:00:00

status 1 (Enabled)

Table 3. Gateway document

• messages, logging all the commands, configuration messages, parameterized

messages that will be send to the network.

• sensors_data, storing all the data coming from the sensors in WSN.

• actions, contain rules how to handle different types of data. For example,

assume that we have a sensor that send us data with the values of temperature.

When the temperature goes down of 20 degrees (it will be defined in the rules

fields of the document) make the action defined in the action field. A typical

entry of such an action is shown in Table 3 below.

Table 4.Temperature rule document

_id 11292812

data_type_id 5

(data_types � temperature)

action send_email

createdAt 2015-10-10 23:00:00

updatedAt 2015-10-10 23:00:00

status 1 (Enabled)

rules { "minimum": 20, "maximum": 35 }

54

4.5.3 Monitoring

After we have created entire network, it is time to implement some tools in order to

monitoring, configuring and parameterized both wireless sensor network and IP

network. For this purpose we have created a web-based platform in order to achieve

this, as shown in the figure below.

Figure 14. Web Panel

Monitoring panel we will be contain everything we need in order customized our

network configurations and monitoring network sensors. A sample of this web panel

which is shown in the figure above contains the location of a configured wireless

sensor network, panel GPS location, a streaming data of an accelerometer sensor from

our network and finally the main messages of the network, panel Framework

messages, and the available sensor devices. The technologies used for the

implementation of the monitoring tools is HTML5, CSS3, and JavaScript.

55

5. Demos

In this chapter we will present two simple demos, with the functionality of our

system. In the first demo we will describe in detail, the initialization process of core

network services, and then we will present additional services that our system needs

in order to provide the basic functionality which is the collection of data transmitted

from wireless sensor networks. After setup the basic services in our system, we will

present an easy to understand second demo, which will show how the system can send

notifications according to rules that we define and the data collected from sensors.

5.1 System basic functionality initialization

In the first demo, we will describe a step by step service initialization process, in order

to our system to be able to collect data from sensor motes in WSN.

Coordinator

Message Broker

Starting up Coordinator

Data Storage

Starting up Data Storage Starting up Message Broker

Monitor Service

WSN Gateways

Starting Monitor Service

Starting Gateways

Connect with Sensor motes & Start Streaming

Figure 15. System startup procedure

56

The services that will start in this demo are:

1. Coordinator

2. Message Broker

3. Data Storage

4. Monitor Service

5. WSN Gateway

The first service that need to be started is the Coordinator. We need the coordinator,

for the services to retrieve configurations in order to start operate inside the network.

As reported in previous chapters coordinator contains configurations and service

registration data. After starting the coordinator, we start the Message Broker, in order

network services to publish and receive messages. Once the message broker is started,

it’s responsible to create an entry to the coordinator with information that will be used

later by services. The most important information are, host and supported protocols.

The host is the IP or domain name of the message broker, and supported protocols is

the message passing protocols supported by this broker, like MQTT.

Service Coordinator Message Broker

1. Connect

2. OK

3. Fetch Message Brokers

4. List of Available Brokers

5. Choose Broker

6. Connect to Message Broker

7. OK

10. Start Publishing/Receiving Messages

8. Register

9. Subscribe for messages.

Figure 16.Typical service startup procedure

Finally we start the Data Storage service, which as the name implies, will be used to

store collected data from sensors. This data will be delivered via the Message Broker.

For this reason this service needs to connect to the Message Broker, but how this

service knows the IP of the Message Broker; this is where we need the Coordinator.

57

Data Storage service fetch from the Coordinator the IP of a broker that support a

protocol wanted from the service, e.g. MQTT, and then connects to the broker. After

connection established with Message Broker each service is responsible to register

itself to the Coordinator, to be available to any service wants to communicate with.

One last thing that must be done from a service is to inform the Message Broker with

the messages want to receive. The procedure described is depicted in figure 16. So far

we start the network core services. Now we need to start two additional services in

order to start collecting data. The first service is the Monitor service, which provide to

end users a web interface from where we can monitor sensor devices and configure

them. The starting process of monitor service it’s the same as all the network services.

Finally we start the gateways which connect our IP network with our heterogeneous

wireless sensor network. From that moment onwards we can monitor and publish

messages to WSN.

Sensor

Mote

Gateway

Message

Broker

Monitor

Service

End User

Figure 17. Typical message routing

A typical message route depicted in figure 17 below. A message sent from a sensor

mote first received from the gateway, which in turn forward it to Message Broker.

When Message Broker receive the message, checking its subscriptions and forward

58

the message to interested parties, which in our demo is Monitor service. Finally, when

the monitor services receives the message, show it to the end user.

5.2 Configure system notifications

From the previous demo, we have already setup all the necessary services for our

network to operate. In this demo we will start a new service that will receive data

from the Message Broker, analyze them, and checkout if the rules for the data is in the

permissible limits, and if not triggers a notification to the network, in order for other

services that handle notifications to perform, the configured actions. Firstly we will

start a service, which handle data from the sensors, and to be more specific, handle

accelerometer data. After the basic initialization, the service will fetch from the Data

Storage, rules relative to accelerometer data.

Receive

Data
Checkout Data

Trigger Event

Rules Mismatch

Receive Event

Send Notication

Figure 18. Notification process

Then we will start an additional service that listens for notifications events, and when

receive such a notification just performs the action. In our demo the notification is a

simple email that informs end users about the rules mismatch. In figure 18, depicted

the process for sending a notification.

59

6. Performance Evaluation

In this section we evaluate the performance of our infrastructure implementation.

Firstly, aiming to evaluate time constrained behavior and performance robustness, we

measure the round trip delay of a message which is send from WSN until the

respective response comes. Furthermore in order to evaluation the resource demands

as well as scalability capabilities, we measure CPU and memory usage in the

Gateway, which is a critical component in our infrastructure. Additionally, in order to

reveal the effect of different technologies both Bluetooth based and IEEE 802.15.4

devices are utilized in conducted experiments.

6.1 Experimental setup

Aiming to offer useful, objective and comprehensive evaluation for our network

infrastructure, the following network parameters are taken into consideration:

• Traffic data rate of 5 transmitted messages per second.

• 1 up to 6 concurrently transmitted nodes are considered.

• A data message size of 16 bytes typical for WSN applications.

In order to measurement the round trip delay of a message the following scenario

implemented. Firstly we create a network service, which receives the measurement

messages and without performing any manipulation, sent them back to the Message

Broker. In the WSN, our sensors before send the message to the Gateway save the

transmission time. When the Gateway receive the message forward it to Message

Broker, which in turn send it to the network service we have created. As mentioned

before, our service when receive the message send it back to Message Broker, which

forward it again to the Gateway. In this point the Gateway, extract the payload from

the message, in order to find the destination sensor mote, for send it. Finally when the

sensor mote receive the message, calculate the delay, between the received and

transmission message time.

The evaluation undertaken is conducted based on Shimmer platform [21], which

offering both Bluetooth and 802.15.4, communication capabilities. Shimmer nodes'

60

software stack is based on the open source TinyOS operating system. The Gateway is

a standard x86 PC running Linux operating system.

6.2 Experimental results

Firstly we measure the delay only for devices transmitting messages through

Bluetooth, then measure delay only for devices transmitting messages through

802.15.4, finally create a mixed network where half the sensors send messages

through Bluetooth and the other half through 802.15.4.

Figure 19, below, the time it takes for a message to send from a device and return to

it. As depicted when only Bluetooth devices transmit messages, the mean delay

ranges from 120ms up to 150ms, when 6 devices transmit concurrently.

Figure 19. Messages Mean Delay

In the measurements where only 802.15.4 devices transmit messages, the results is

identical with Bluetooth, on low traffic rate scenarios, where 2 device transmit

concurrent, but when we increase the concurrent transmission devices to 4 and 6, we

observer a slight increase, where the mean delay reach up to 185ms, when 6 devices

transmit concurrently. Finally, in the mixed networking scenario, the results are

almost identical, with the corresponding, when we have only Bluetooth or 802.15.4

61

transmitters. Ranges from 130ms up to ~180ms when 6 devices transmit concurrently.

Respective measurements advocate the use of the proposed infrastructure even in

demanding WSN applications. Additional, it exhibits considerable stability with

respect to heterogeneous technologies and varying number of sensors.

Figure 20, below, depicts, depicts, the CPU usage of the Gateway, when sensors

transmitting data. As shown the usage ranges mainly from 2% up 5% for all scenario,

with some small spikes, who reach up to 14%, originates when Bluetooth devices

transmit data.

Figure 20. CPU Usage

Finally figure 21, below, depicts the memory usage of the Gateway, when sensors

transmitting data. As shown the usage ranges from 60MB on low traffic scenarios, up

to 80MB when high traffic scenarios imposed. Both memory and CPU utilization

measurements indicate quite low respective demands which can be accommodated by

nowadays embedded systems such as Raspberry PI or Intel's Edison based platforms.

62

Figure 21. Memory Usage

63

7. Conclusions

Over the last few years Cyber Physical Systems appear as the most prominent

research area able to unite the physical and cyber domains in the context of a wide

range of different and diverse applications scenarios. However, in order for respective

solutions to be truly useful, practical and widely utilized there is a critical need for

holistic communication architectures tackling heterogeneity while exhibiting high

degree of flexibility and configurability. Driven by this requirement this paper

proposes a comprehensive end-to-end architecture based on message passing

communication paradigm. In that respect implemented architecture includes wireless

sensor networks as the last mile of a complete CPS systems but also considers

backend aspects such as network coordination, storage facilities and end user

interfaces. All these aspects comprise a complete, efficient and versatile novel

architecture effectively addressing aforementioned requirements. Additionally,

implemented solutions is evaluated considering different WSN communication

technologies and workload patterns exhibiting in all cases time constrained and robust

behavior. Furthermore, resource requirements are measured revealing conservative

respective demands easily met by COTS nowadays embedded platforms. Finally we

believe that such an effort can also serve as the foundation for further extensions and

enhancement increasing the added value of such solutions in different application

domains.

64

Bibliography
1. Fei Hu, Cyber Physical Systems - Integrated Computing and Engineering Design.

CRC Press, 2014.

2. Bluetooth. Specifications of the Bluetooth Systems (SIG). 2001 : s.n. Version 1.1.

3. IEEE. 802.15.4 Specification. 802.15.4 Specification. [Online] IEEE.

http://standards.ieee.org/about/get/802/802.15.html.

4. ZigBee Specification. 2008.

5. Linux. [Online] http://www.linux.org.

6. Levis Philip and Gay David. TinyOS Programming. 2009.

7. AMQP Specification v1.0. 2011.

8. STOMP Specifications. 2015. v1.2.

9. Banks Andrew and Gupta Rahul. MQTT Specifications v3.1.1. s.l. : OASIS, 2014.

10. Truong, Andy Stanford-Clark & Hong Linh. MQTT for Sensor Networks (MQTT-

SN), Protocol Specification v1.2. 2013.

11. Michael McGrath, Cliodhan Scanail. Sensor Technologies. s.l. : Apress, 2013.

12. IBM. [Online] March 2013. https://goo.gl/VV1LNw.

13. Mosquitto. Mosquitto. [Online] September 2015. http://mosquitto.org/.

14. Bruce Snyder, Dejan Bosanac, and Rob Davies. ActiveMQ in Action. s.l. : Manning

Publications, 2011.

15. KahaDB. ActiveMQ Kaha. [Online] 2015. http://activemq.apache.org/kahadb.html.

16. Newman Sam. Building Microservices. s.l. : O'Reilly, 2015.

17. Haloi, Saura. Apache Zookeeper Essentials. s.l. : Packt Publishing, 2015.

18. Kotek Jan. mapDB. [Online] 2014. http://www.mapdb.org/.

19. MongoDB. [Online] https://www.mongodb.org/.

20. JSON. [Online] http://www.json.org/.

21. Shimmer. [Online] http://www.shimmer-research.com/.

22. Gregor Hohpe. Enterprise Integration Patterns Design Building and Deploying

Messaging Solutions. s.l. : Addison-Wesley, 2004.

23. Zookeeper: Wait-free coordination for Internet-scale system. P Hunt, M. Konar, F.

Junqueira, B. Reed. s.l. : USENIXATC Proceedings of the 2010 USENIX conference

on USENIX annual technical conference, 2010.

24. MQTT-S – A Publish/Subscribe Protocol For Wireless Sensor Networks. U Hunkeler,

H. Truong, A. Stanford-Clark. 2008.

25. Enabling Publish/Subscribe Services in Sensor Networks. Duc A. Tran, Linh H.

Truong. 2010.

26. Wireless Sensor Network Architecture for Smart Building. Adama, V. 2008.

27. Communication based on MQTT Protocol. Milojic, Milan. 2014.

28. A Comparative study of Wireless Protocols: Bluetooth, UWB, ZigBee and Wifi. J.

Lee, Y. Su, Ch. Shen. 2006.

29. Nane Kratzke, About Microservices, Containers and their Underestimated Impact on

Network Performance, CLOUD COMPUTING 2015 : The Sixth International

Conference on Cloud Computing, GRIDs, and Virtualization

30. Aad Versteden, Erika Pauwels, Agis Papantoniou. An Ecosystem of User-facing

Microservices supported by Semantic Models. Published at the 5th International

USEWOD Workshop.

31. Orestis Evangelatos, Kasun Samarasinghe, Jose Rolim. Evaluating Design

Approaches For Smart Building Systems.

65

Abbreviations
ACL – Access Controls Lists

AMQP – Advanced Message Queuing Protocol

API – Application Programming Interface

BSON – Binary JSON

CPS – Cyber Physical System

CSS – Cascading Style Sheets

DB – Database

DMZ – Demilitarized Zone

FCC – Federal Communications Commission

FHSS – Frequency Hopping Spread Spectrum

GPS – Global Positioning System

GSFK – Gaussian Frequency Shift Keying

GW – Gateway

HCI – Host Controller Interface

HTML – HyperText Markup Language

IoT – Internet of Things

IP – Internet Protocol

ISM – Industrial Scientific Medicine

JAAS – Java Authentication Authorization

Service

JMS – Java Message Service

JSON – JavaScript Object Notation

LMP – Link Management Protocol

L2CAP – Logical Link Control and Adaptation

Protocol

MEMS – Microelectromechanical Systems

MOM – Message Oriented Middleware

MQ – Message Queue

MQTT – MQ Telemetry Passport

MQTT-SN – MQ Telemetry Passport for Sensor

Networks

M2M – Machine to Machine

OS – Operating System

O-QPSK – Offset Quadrature Phase Shift

Keying

OSI – Open Systems Interconnection

PC – Personal Computer

PDA – Personal Digital Assistance

POSIX – Portable Operating System Interface

QoS – Quality of Service

QPSK – Quadrature Phase Shift Keying

RAM – Random-Access Memory

RF – Radio Frequency

RFCOMM – Radio Frequency Communications

RPC – Remote Procedure Call

RSMB – Real Small Message Broker

SASL – Simple Authentication and Security

Layer

SIG – Bluetooth Special Interest Group

SDP – Service Discovery Protocol

STOMP – Streaming Text Oriented Message

Protocol

TCP – Transmission Control Protocol

TDD – Time Division Multiplexing

TLS – Transport Layer Security

UDP – User Datagram Protocol

URI – Uniform Resource Identifier

URL – Uniform Resource Locator

WSN – Wireless Sensor Network

XML – Extensible Markup Language

